Cari Blog Ini

Kamis, 22 Maret 2012

PENGERTIAN KOLOID

2.1 PENGERTIAN KOLOID

Ada kehidupan sehari-hari ini, sering kita temui beberapa produk yang merupakan campuran dari beberapa zat, tetapi zat tersebut dapat bercampur secara merata/ homogen. Misalnya saja saat ibu membuatkan susu untuk adik, serbuk/ tepung susu bercampur secara merata dengan air panas. Produk-produk seperti itu adalah sistem koloid.
 Koloid adalah suatu campuran zat heterogen (dua fase) antara dua zat atau lebih di mana partikel-partikel zat yang berukuran koloid (fase terdispersi/yang dipecah) tersebar secara merata di dalam zat lain (medium pendispersi/ pemecah). Ukuran partikel koloid berkisar antara 1-100 nm. Ukuran yang dimaksud dapat berupa diameter, panjang, lebar, maupun tebal dari suatu partikel. Contoh lain dari sistem koloid adalah adalah tinta, yang terdiri dari serbuk-serbuk warna (padat) dengan cairan (air). Selain tinta, masih terdapat banyak sistem koloid yang lain, seperti mayones, hairspray, jelly, dll.  
Keadaan koloid atau sistem koloid atau suspensi koloid atau larutan koloid atau suatu koloid adalah suatu campuran berfasa dua yaitu fasa terdispersi dan fasa pendispersi dengan ukuran partikel terdispersi berkisar antara 10-7 sampai dengan 10-4 cm. Besaran partikel yang terdispersi, tidak menjelaskan keadaan partikel tersebut. Partikel dapat terdiri atas atom, molekul kecil atau molekul yang sangat besar. Koloid emas terdiri atas partikel-partikel dengan bebagai ukuran, yang masing-masing mengandung jutaan atom emas atau lebih. Koloid belerang terdiri atas partikel-partikel yang mengandung sekitar seribu molekul S8. Suatu contoh molekul yang sangat besar (disebut juga molekul makro) ialah haemoglobin. Berat molekul dari molekul ini 66800 s.m.a dan mempunyai diameter sekitar 6 x 10-7.


2.2  JENIS-JENIS KOLOID
Sistem koloid tersusun dari fase terdispersi yang tersebar merata dalam medium pendispersi. Fase terdispersi dan medium pendispersi dapat berupa zat padat, cair, dan gas. Berdasarkan fase terdispersinya, sistem koloid dapat dikelompokkan menjadi 3, yaitu:

1.      Sol (fase terdispersi padat)
a. Sol padat adalah sol dalam medium pendispersi padat
     Contoh: paduan logam, gelas warna, intan hitam
b. Sol cair adalah sol dalam medium pendispersi cair
     Contoh: cat, tinta, tepung dalam air, tanah liat
c. Sol gas adalah sol dalam medium pendispersi gas
    Contoh: debu di udara, asap pembakaran

2.      Emulsi (fase terdispersi cair)
a. Emulsi padat adalah emulsi dalam medium pendispersi padat
    Contoh: Jelly, keju, mentega, nasi
b. Emulsi cair adalah emulsi dalam medium pendispersi cair
    Contoh: susu, mayones, krim tangan
c. Emulsi gas adalah emulsi dalam medium pendispersi gas
    Contoh: hairspray dan obat nyamuk

3.      BUIH (fase terdispersi gas)
a. Buih padat adalah buih dalam medium pendispersi padat
    Contoh: Batu apung, marshmallow, karet busa, Styrofoam
b. Buih cair adalah buih dalam medium pendispersi cair
    Contoh: putih telur yang dikocok, busa sabun
     - Untuk pengelompokan buih, jika fase terdispersi dan medium pendispersi
              sama- sama berupa gas, campurannya tergolong larutan


2.3  SIFAT-SIFAT KOLOID
                     Efek Tyndall
Efek Tyndall ialah gejala penghamburan berkas sinar (cahaya) oleh partikel-partikel koloid. Hal ini disebabkan karena ukuran molekul koloid yang cukup besar. Efek tyndall ini ditemukan oleh John Tyndall (1820-1893), seorang ahli fisika Inggris. Oleh karena itu sifat itu disebut efek tyndall.
Efek tyndall adalah efek yang terjadi jika suatu larutan terkena sinar. Pada saat larutan sejati (gambar kiri) disinari dengan cahaya, maka larutan tersebut tidak akan menghamburkan cahaya, sedangkan pada sistem koloid (gambar kanan), cahaya akan dihamburkan. hal itu terjadi karena partikel-partikel koloid mempunyai partikel-partikel yang relatif besar untuk dapat menghamburkan sinar tersebut. Sebaliknya, pada larutan sejati, partikel-partikelnya relatif kecil sehingga hamburan yang terjadi hanya sedikit dan sangat sulit diamati.

                     Gerak Brown
Gerak Brown ialah gerakan partikel-partikel koloid yang senantiasa bergerak lurus tapi tidak menentu (gerak acak/tidak beraturan). Jika kita amati koloid dibawah mikroskop ultra, maka kita akan melihat bahwa partikel-partikel tersebut akan bergerak membentuk zigzag. Pergerakan zigzag ini dinamakan gerak Brown. Partikel-partikel suatu zat senantiasa bergerak.
Gerakan tersebut dapat bersifat acak seperti pada zat cair dan gas, atau hanya bervibrasi di tempat seperti pada zat padat. Untuk koloid dengan medium pendispersi zat cair atau gas, pergerakan partikel-partikel akan menghasilkan tumbukan dengan partikel-partikel koloid itu sendiri. Tumbukan tersebut berlangsung dari segala arah. Oleh karena ukuran partikel cukup kecil, maka tumbukan yang terjadi cenderung tidak seimbang. Sehingga terdapat suatu resultan tumbukan yang menyebabkan perubahan arah gerak partikel sehingga terjadi gerak zigzag atau gerak Brown. Semakin kecil ukuran partikel koloid, semakin cepat gerak Brown terjadi. Demikian pula, semakin besar ukuran partikel koloid, semakin lambat gerak Brown yang terjadi. Hal ini menjelaskan mengapa gerak Brown sulit diamati dalam larutan dan tidak ditemukan dalam zat padat (suspensi). Gerak Brown juga dipengaruhi oleh suhu. Semakin tinggi suhu system koloid, maka semakin besar energi kinetic yang dimiliki partikel-partikel medium pendispersinya. Akibatnya, gerak Brown dari partikel-partikel fase terdispersinya semakin cepat. Demikian pula sebaliknya, semakin rendah suhu system koloid, maka gerak Brown semakin lambat.

                     Absorpsi
Absorpsi  ialah peristiwa penyerapan partikel atau ion atau senyawa lain pada permukaan partikel koloid yang disebabkan oleh luasnya permukaan partikel. (Catatan : Absorpsi harus dibedakan dengan absorpsi yang artinya penyerapan yang terjadi di dalam suatu partikel). Contoh : (i) Koloid Fe(OH)3 bermuatan positif karena permukaannya menyerap ion H+. (ii) Koloid As2S3 bermuatan negatif karena permukaannya menyerap ion S2.

                     Muatan koloid
Dikenal dua macam koloid, yaitu koloid bermuatan positif dan koloid bermuatan negatif.

                     Koagulasi koloid
Koagulasi adalah penggumpalan partikel koloid dan membentuk endapan. Dengan terjadinya koagulasi, berarti zat terdispersi tidak lagi membentuk koloid. Koagulasi dapat terjadi secara fisik seperti pemanasan, pendinginan dan pengadukan atau secara kimia seperti penambahan elektrolit, pencampuran koloid yang berbeda muatan.

                     Koloid pelindung
Koloid pelindung ialah koloid yang mempunyai sifat dapat melindungi koloid lain dari proses koagulasi.

                     Dialisis
Dialisis ialah pemisahan koloid dari ion-ion pengganggu dengan cara ini disebut proses dialisis.

                     Elektroforesis
Elektroferesis ialah peristiwa pemisahan partikel koloid yang bermuatan dengan menggunakan arus listrik.

2.4  PEMBUATAN SISTEM KOLOID

Reaksi dekomposisi rangkap
Misalnya:
- Sol As2S3 dibuat dengan gaya mengalirkan H2S dengan perlahan-lahan melalui larutan As2O3 dingin sampai terbentuk sol As2S3 yang berwarna kuning terang;
As2O3 (aq) + 3H2S(g) à As2O3 (koloid) + 3H2O(l)
(Koloid As2S3 bermuatan negatif karena permukaannya menyerap ion S2-)
- Sol AgCl dibuat dengan mencampurkan larutan AgNO3 encer dan larutan HCl encer;
AgNO3 (ag) + HCl(aq) à AgCl (koloid) + HNO3 (aq)

Pemanasan nitrat
Jika dipanaskan, kebanyakan nitrat cenderung mengalami dekomposisi membentuk oksida logam, nitrogen dioksida berupa asap coklat, dan oksigen.
Sebagai contoh, nitrat Golongan 2 yang sederhana seperti magnesium nitrat mengalami dekomposisi dengan reaksi sebagai berikut :
Pada Golongan 1, ithium nitrat mengalami proses dekomposisi yang sama - menghasilkan lithium oksida, nitrogen dioksida dan oksigen.
Akan tetapi, nitrat dari unsur selain lithium dalam Golongan 1 tidak terdekomposisi sempurna (minimal tidak terdekomposisi pada suhu Bunsen) - menghasilkan logam nitrit dan oksigen, tapi tidak menghasilkan nitrogen oksida.
Semua nitrat dari natrium sampai cesium terdekomposisi menurut reaksi di atas, satu-satunya yang membedakan adalah panas yang harus dialami agar reaksi bisa terjadi. Semakin ke bawah golongan, dekomposisi akan semakin sulit, dan dibutuhkan suhu yang lebih tinggi.
Pemanasan karbonat
Jika dipanaskan, kebanyakan karbonat cenderung mengalami dekomposisi membentuk oksida logam dan karbon dioksida.
Sebagai contoh, karbonat Golongan 2 sederhana seperti kalsium karbonat terdekomposisi sebagai berikut:
Pada Golongan 1, lithium karbonat mengalami proses dekomposisi yang sama - menghasilkan lithium oksida dan karbon dioksida.
Karbonat dari unsur-unsur selain lithium pada Golongan 1 tidak terdekomposisi pada suhu Bunsen, walaupun pada suhu yang lebih tinggi mereka akan terdekomposisi. Suhu dekomposisi lagi-lagi meningkat semakin ke bawah Golongan.


2.5   KEGUNAAN KOLOID
Sistem koloid banyak digunakan pada kehidupan sehari-hari, terutama dalam kehidupan sehari-hari. Hal ini disebabkan sifat karakteristik koloid yang penting, yaitu dapat digunakan untuk mencampur zat-zat yang tidak dapat saling melarutkan secara homogen dan bersifat stabil untuk produksi dalam skala besar.

          Berikut ini adalah tabel aplikasi koloid:
 
Jenis industri
Contoh aplikasi
Industri makanan
Keju, mentega, susu, saus salad
Industri kosmetika dan perawatan tubuh
Krim, pasta gigi, sabun
Industri cat
Cat
Industri kebutuhan rumah tangga
Sabun, deterjen
Industri pertanian
Peptisida dan insektisida
Industri farmasi
Minyak ikan, pensilin untuk suntikan

Berikut ini adalah penjelasan mengenai aplikasi koloid:
 1.       Pemutihan Gula
            Gula tebu yang masih berwarna dapat diputihkan. Dengan melarutkan gula ke dalam air, kemudian larutan dialirkan melalui sistem koloid tanah diatomae atau karbon. Partikel koloid akan mengadsorpsi zat warna tersebut. Partikel-partikel koloid tersebut mengadsorpsi zat warna dari gula tebu sehingga gula dapat berwarna putih.

2.       Penggumpalan Darah
            Darah mengandung sejumlah koloid protein yang bermuatan negatif. Jika terjadi luka, maka luka tersebut dapat diobati dengan pensil stiptik atau tawas yang mengandung ion-ion Al3+ dan Fe3+. Ion-ion tersebut membantu agar partikel koloid di protein bersifat netral sehingga proses penggumpalan darah dapat lebih mudah dilakukan.

3.         Penjernihan Air
            Air keran (PDAM) yang ada saat ini mengandung partikel-partikel koloid tanah liat,lumpur, dan berbagai partikel lainnya yang bermuatan negatif. Oleh karena itu, untuk menjadikannya layak untuk diminum, harus dilakukan beberapa langkah agar partikel koloid tersebut dapat dipisahkan. Hal itu dilakukan dengan cara menambahkan tawas (Al2SO4)3.Ion Al3+ yang terdapat pada tawas tersebut akan terhidroslisis membentuk partikel koloid Al(OH)3 yang bermuatan positif melalui reaksi:
Al3+   +   3H2O     à    Al(OH)3   +      3H+
Setelah itu, Al(OH)3 menghilangkan muatan-muatan negatif dari partikel koloid tanah liat/lumpur dan terjadi koagulasi pada lumpur. Lumpur tersebut kemudian mengendap bersama tawas yang juga mengendap karena pengaruh gravitasi. Berikut ini adalah skema proses penjernihan air secara lengkap:
http://sistemkoloid.tripod.com/waterpurify.jpg

BAB  III
PENUTUP

3.1 KESIMPULAN
      Partikel koloid dapat menghamburkan cahaya sehingga berkas cahaya yang melalui sistem koloid. Dapat diamati dari samping sifat partikel koloid ini disebut efek Tyndall.
      Jika diamati dengan mikroskop ultra ternyata partikel koloid senantiasa bergerak dengan gerak patah-patah yang disebut gerak Brown. Gerak Brown terjadi karena tumbukan tak simetris antara molekul medium dengan partikel koloid.
      Koloid dapat mengadsorpsi ion atau zat lainpada permukaannya, dan oleh karena luas permukaannya yang relatif besar, maka koloid mempunyai daya adsorpsi yang besar.
      Adsorpsi ion-ion oleh partikel koloid membuat partikel koloid menjadi bermuatan listrik. Muatan koloid menyebabkan gaya tolak-menolak di antara partikel koloid, sehingga menjadi stabil (tidak mengalami sedimentasi).
      Muatan partikel koloid dapat ditunjukkan dengan elektroforesis, yaitu pergerakan partikel koloid dalam medan listrik.
      Penggumpalan partikel koloid disebut koagulasi. Koagulasi dapat terjadi karena berbagai hal, misalnya pada penambahan elektrolit. Penambahan elekrolit  akan menetralkan muatan koloid, sehingga faktor yang menstabilkannya hilang.
      Campuran koloid dapat dipisahkan dari ion-ion atau partikel terlarut lainnya melalui dialisis.
      Koloid yang medium dispersinya berupa cairan dibedakan atas koloid liofil dan koloid liofob. Koloid liofil mempunyai interaksi yang kuat dengan mediumnya; sebaliknya, pada koloid liofob interaksinya tersebut tidak ada atau sangat lemah.



      Banyak sekali produk industri dalam bentuk koloid, terutama karena dengan bentuk koloid, maka zat-zat yang tidak saling melarutkan dapat disajikan homogen secara makroskopis.
      Pengolahan air bersih memanfaatkan sifat koloid, yaitu adsorpsi dan koagulasi. Pada pengolahan air bersih digunakan tawas (alumunium sulfat), kaporit (klorin) dan kapur.
      Koloid dapat dibuat dengan cara dispersi atau kondensasi. Pada cara dispersi, bahan kasar dihaluskan kemudian didispersikan ke dalam medium dispersinya. Pada cara kondensasi, koloid dibuat dari larutan di mana atom atau molekul mengalami agregasi (pengelompokan), sehingga menjadi partikel koloid.
      Sabun dan detergen bekerja sebagai bahan aktif permukaan yang fungsinya mengelmusikan lemak ke dalam air.
      Asbut adalah suatu bentuk pencemaran yang merupakan sistem koloid.


Pengertian dan Jenis-jenis Koloid

DEFINISI

Koloid adalah suatu campuran zat heterogen antara dua zat atau lebih di mana partikel-partikel zat yang berukuran koloid tersebar merata dalam zat lain. Ukuran koloid berkisar antara 1-100 nm ( 10-7 – 10-5 cm ).
Contoh:
Mayones dan cat, mayones adalah campuran homogen di air dan minyak dan cat adalah campuran homogen zat padat dan zat cair.


Perbedaan larutan sejati, sistem koloid, dan suspensi kasar.
Keterangan:
1. Larutan sejati
2. Sistem koloid
3. Suspensi Kasar

Jumlah fase
1. 1
2. 2
3. 2
Distribusi partikel
1. Homogen
2. Heterogen
3. Heterogen
Ukuran partikel
1. <10-7>10-5cm
Penyaringan
1. Tidak dapat disaring
2. Tidak dapat disaring, kecuali dengan penyaring ultra
3. Dapat disaring
Kestabilan
1. Stabil, tidak memisah
2. Stabil, tidak memisah
3. Tidak stabil, memisah
Contoh
1. Larutan gula, larutan garam, Udara bersih
2. Tepung kanji dalam air, Mayones, Debu di udara
3.
Campuran pasir dan air, Sel darah merah dan plasma putih dalam plasma darah.


Jenis – jenis koloid

1. Sol (fase terdispersi padat)
a. Sol padat adalah sol dalam medium pendispersi padat
Contoh: paduan logam, gelas warna, intan hitam
b. Sol cair adalah sol dalam medium pendispersi cair
Contoh: cat, tinta, tepung dalam air, tanah liat
c. Sol gas adalah sol dalam medium pendispersi gas
Contoh: debu di udara, asap pembakaran

2. Emulsi (fase terdispersi cair)
a. Emulsi padat adalah emulsi dalam medium pendispersi padat
Contoh: Jelly, keju, mentega, nasi
b. Emulsi cair adalah emulsi dalam medium pendispersi cair
Contoh: susu, mayones, krim tangan
c. Emulsi gas adalah emulsi dalam medium pendispersi gas
Contoh: hairspray dan obat nyamuk

3. BUIH (fase terdispersi gas)
a. Buih padat adalah buih dalam medium pendispersi padat
Contoh: Batu apung, marshmallow, karet busa, Styrofoam
b. Buih cair adalah buih dalam medium pendispersi cair
Contoh: putih telur yang dikocok, busa sabun
- Untuk pengelompokan buih, jika fase terdispersi dan medium pendispersi sama-sama berupa gas, campurannya tergolong larutan


EXPERIMENT
Apa yang telah dibahas dalam subtopik ini dapat dibuktikan slah satunya dengan sebuah eksperimen seperti yang di bawah ini:

Tujuan:
mempelajari berbagai jenis campuran

Alat dan Bahan:
Gelas kimia (100ml)
Pengaduk corong kertas saring
Gula pasir
Terigu
Susub instant
Ureasabun
Serbuk belereng
Air suling

Cara kerja:
1. Isilah 6 gelas kimia dengan 50 ml air suling
2. Tambahkan:
a. 1 sendok teh gula pasir dalam gelas-1
b. 1 sendok teh terigu dalam gelas-2
c. 1 sendok teh susu instan dalam gelas-3
d. 1 sendok teh urea dalam gelas-4
e. 1 sendok teh sabun dalam gelas-5
f. 1 sendok teh serbuk belerang dalam gelas-6
3. Aduklah setiap campuran. Perhatikanlah apakah zat yang dicampurkan larut atau tidak.
4. Diamkan campuran tersebut. Catat apakah campuran itu stabil atau tidak stabil;bening atau keruh
5. Saringlah setipa campuran. Catat manakah yang meninggalkan redisu dan apakah hasil penyaringan bening atau keruh.

Hasil Pengamatan:
Sifat campuran Campuran air dengan
Gula Terigu Susu Urea Sabun Belerang
Kelarutan
Kestabilan
Bening/keruh
Residu
Filtrat
Bening/keruh

Diskusi:
- Campuran –campuran tersebut termasuk dalam larutan, sejati, koloid atau suspensi
- Kesimpulan dari percobaan di atas
Campuran air dan gula akan membentuk larutan gula.
Zat terlarut tidak tampak lagi, tersebar dalam bentuk partikel-partikel yang sangat kecil. Larutan merupakan campuran homogen, stabil dan tidak dapat disaring. Susu dengan air membentuk larutan yang keruh. Jika didiamkan campuran tidak menghasilkan endapan dan larutan keruh tersebut tidak dapat dipisahkan dengan penyaringan. Campuran ini homogen terdiri atas dua fasa. Tepung dan air, membentuk endapan dari tepung yna tidak larut. Larutan bersifat homogen dan dapat dipisahkan dengan penyaringan. Dari pengamatan ini menunjukkan bahwa ukuran patikel-partikel yang terdispersi dalam suatu campuran menentukan jenis dan sifat campuran tersebut. Karena perbedaan ukuran partikel terdispersi tersebut maka larutan dan koloid sama-sama tercampur homogen, dapat dibedakan dengan kertas selofan. Partikel larutan dapat menembus kertas selofan sedangkan partikel-partikel koloid tidak. Besarnya partikel terdispersi merupakan faktor penentu dari sifat atau keadaan campuran (larutan, koloid atau suspensi)

Koloid Sol

SIFAT-SIFAT KOLOID SOL

a. Efek Tyndall
Sifat pengahamburan cahaya oleh koloid di temukan oleh John Tyndall, oleh karena itu sifat ini dinamakan Tyndall. Efek dari Tyndall digunakan untuk membedakan system koloid dari larutan sejati, contoh dalam kehidupan sehari – hari dapat diamati dari langit yang tampak berwarna biru atau terkandang merah/oranye.
Selain itu contoh lainnya adalah pada koloid kanji dan larutan Na2Cr2O7, maka sinar dihamburkan oleh system koloid tetapi tidak dihamburkan oleh larutan sejati hal ini dapat dilihat terdapat berkas sinar pada larutan. Larutan koloid kanji memiliki partikel-partikel koloid relatif besar untuk dapat menhamburkan sinar dan sebaliknya Na2Cr2O7 memiliki partikel-partikel yang relatif kecil sehingga hamburan yang terjadi sedikit kecil dan sulit diamati.

b. Gerak Brown
Dibawah mikroskop ultra, partikel koloid akan tampak sebagai titik cahaya. Jika pergerakan titik cahaya atau partikel tersebut diikuti, partikel itu bergerak terus-menerus dengan gerakan zigzag.
Hal ini pertama kali diamati oleh Robert Brown (1773-1858), seorang ahli botani inggris pada tahun 1827. Ia sedang mengamati butiran sari tumbuhan pada permukaan air dean mikroskop. Partikel koloid dalam medium pendispersinya disebut gerak brown.

Bagaimana gerak brown dijelaskan?
Partikel – partikel suatu zat senantiasa bergerak. Gerakan tersebut bersifat acak seperti pada zat cair dan gas. System koloid dengan medium pendipersi zat cair atau gas, partikel-partikel menghasilkan tumbukan. Tumbukan tersebut berlangsung dari segala arah. Partikel koloid cukup kecil, tumbukan cenderung tidak seimbang. Dan menyebabkan perubahan arah partikel sehingga terjadi gerak zigzag atau gerak brown.
Semakin kecil ukuran partikel koloid, semakin cepat gerak brown. Semakin besar ukuran partikel, semakin lambat gerak brown.
Gerak Brown dipengerahui oleh suhu. Semakin tinggi suhu system, koloid, semakin besar energi kinektik yang dimiliki partikel medium. Akibatnya, gerak Brown dari partikel fase terdispersinya semakin cepat. Semakin rendah suhu system koloid, maka gerak Brown semakin lambat.

c. Adsorpsi koloid
Partikel sol padat ditempatkan dalam zat cair atau gas, maka partikel zat cair atau gas akan terakumulasi. Fenomena disebut adsorpsi. Jadi sdsorpsi terkait dengan penyerapan partikel pada permukaan zat. Partikel koloid sol memiliki kemampuan untuk mengadsorpsi partikel pendispersi pada permukaanya. Daya adsorpsi partikel koloid tergolong besar Karenna partikelnya memberikan sesuatu permukaan yang luas. Sifat ini telah digunakan dalam berbagai proses seperti penjernihan air.

d. Muatan koloid sol
Sifat koloid terpenting adalah muatan partikel koloid.
Semua partikel koloid memiliki muatan sejenis (positif dan negatif). Maka terdapat gaya tolak menolak antar partikel koloid. Partikel koloid tidak dapat bergabung sehingga memberikan kestabilan pada sistem koloid. Sistem koloid secara keseluruhan bersifat netral.

i. Sumber muatan koloid sol
Partikel-partikel koloid mendapat mutan listrik melalui dua cara, yaitu dengan proses adsorpsi dan proses ionisasi gugus permukaan partikelnya.
- Proses adsorpsi
Partikel koloiddapat mengadsorpsi partikel bermuatan dari fase pendispersinya. Jenis muatan tergantung dari jenis partikel yang bermuatan. Partikel sol Fel (OH)3 kemampuan untuk mengadsorpsi kation dari medium pendisperinya sehingga bermuatan positif, sedangkal partikel sol As2S3 mengadsorpsi anion dari medium pendispersinya sehingga bermuatan negatif.
Sol AgCI dalam medium pendispersi dengan kation Ag+ berlebihan akan mengadsorpsi Ag+ sehingga bermuatan positif. Jika anion CI- berlebih, maka sol AgCI akan mengadsorpsi ion CI- sehingga bermuatan positif.

- Proses ionisasi gugus permukaan partikel
Beberapa partikel koloid memperoleh muatan dari proses ionisasi gugus-gugus yang ada pada permukaan partikel koloid.

Ø Koloid protein
Koloid protein adalah jenis koloid sol yang mempunyai gugus yang bersifat asam (-COOH) dan biasa (-NH2). Kedua gugus ini dapat terionisasi dan memberikan muatan pada molekul protein.
Pada ph rendah , gugus basa –NH2 akan menerima proton dan membentuk gugus –NH3. Ph tinggi, gugus –COOH akan mendonorkan proton dan membentuk gugus – COO-. Pada ph intermediet partikel protein bermuatan netral karena muatan –NH3+ dan COO- saling meniadakan.

Ø Koloid sabun dan deterjen
Pada konsentrasi relatif pekat, molekul ini dapat bergabung membentuk partikel berukuran koloid yang disebut misel. Zat yang molejulnya bergabung secara spontan dalam suatu fase pendispersi dan membentuk partikel berukuran koloid disebut koloid terasosiasi.
Sabun adalah garam karboksilat dengan rumus R-COO-Na+.
Anion R-COO- terdiri dari gugus R- yang bersifat non pola. Gugus R- atau ekor non-polar tidak larut dalam air sehingga akan terorientasi ke pusat.

ii. Kestabilan koloid

Muatan partikel koloid adalah sejenis cenderung karena sering tolak-monolak.

iii.Lapisan bermutar ganda
Permukaan partikel Koloid mendapat muatan bahwa partikel-partikel. lapisan bermuatan listrik ini selanjutnya akan menarik ion-ion dengan

Bagaimana sebenarnya struktur dari lapisan bermuatan ganda ini?
Permukaan lapisan ganda ini mengikuti model Helmoslzt. Sekarang model yang lebih akurat adalah :
Lapisan padat : koloid menarik ion-ion dengan muatan yang berlawanan.
Lapisandifusi : merupakan lapisan dimana muatan berlawanan dari medium pendispersi difusi

iv.Elektroforesis :
Partikel koloid sol bermuatan listrik, maka partikel ini akan bergerak dalm medan listrik. Pergerakan partikel koloid dalam medan listrik disebut elektrofesis.
Femonema elektroforesis dapat digunakan untuk menentukan jenis muatan partikel koloid.

e. Koagulasi
Partikel-partikel koloid yang bersifat stabil karena memiliki muatan listrik sejenis. Apabila muatan listrik itu hilang , maka partikel koloid tersebut akan bergabung membentuk gumpalan. Proses penggumpalan partikel koloid dan pengendapannya disebut Koagulasi.
Penghilangan muatan listrik pada partikel koloid ini dapat dilakukan empat cara yaitu :
i. Menggunakan prinsip elektroforesis
Proses elektroforesis adaalh pergerakan partikel koloid yang bermuatan ke electrode dengan muatan berlawanan. Ketika partikel mencapai electrode, maka partikel akan kehilangan muatannya.

ii. Penambahan koloid lain dengan muatan berlawanan

Sistem koloid bermuatan positif dicampur dengan sistem koloid lain yang bermuatan negatif, kedua koloid tersebut akan saling mengadsorpsi menjadi netral maka terbentuk kogulasi.

iii.Penambahan elektrolit
Elektrolit ditambahkan kedalam sistem koloid maka partikel koloid yang bermuatan negatif akan menarik ion positif dari elektrolit. Partikel koloid yang bermuatan positif akan menarik ion negatif dari elektrolit. Menyebabkan partikel koloid tersebut dikelilingi lapisan kedua yang memiliki muatan berlawanan.

iv.Pendidihan
Kenaikan suhu sistem koloid menyebabkan jumlah tumbukan antara partikel-partikel sol dengan molekul-molekul air bertambah banyak. Menyebabkan lepasnya elekrolit yang teradsorpsi pada permukaan koloid.


f. Koloid pelindung
- Sistem koloid dimana partikel terdisperesinya mempunyai daya adsorpsi yang relatif besar disebut koloid liofil.
- Sistem koloid dimana partikel terdisperesinya mempunyai daya adsorpsi yang relatif kecil disebut koloid liofob.
- Koloid lioil bersifat stabil, sedangkan koloid liofob kurang stabil. Koloid liofil yang berfungsi sebagai koloid pelindung.


PEMBUATAN KOLOID SOL

Ukuran partikel koloid berada di antara partikel larutan dan suspensi, karena itu cara pembuatannya dapat dilakukan dengan memperbesar partikel larutan atau memperkecil partikel suspensi. Maka dari itu, ada dua metode dasar dalam pembuatan iystem koloid sol, yaitu:
- Metode kondensasi yang merupakan metode bergabungnya partikel-partikel kecil larutan sejati yang membentuk partikel-partikel berukuran koloid.
- Metode dispersi yang merupakan metode dipecahnya partikel-partikel besar sehingga menjadi partikel-partikel berukuran koloid.


Metode Kondensasi
Pembuatan koloid sol dengan metode ini pada umumnya dilakukan dengan cara kimia (dekomposisi rangkap, hidrolisis, dan redoks) atau dengan penggatian pelarut. Cara kimia tersebut bekerja dengan menggabungkan partikel-partikel larutan (atom, ion, atau molekul) menjadi pertikel-partikel berukuran koloid.

* Reaksi dekomposisi rangkap
Misalnya:
- Sol As2S3 dibuat dengan gaya mengalirkan H2S dengan perlahan-lahan melalui larutan As2O3 dingin sampai terbentuk sol As2S3 yang berwarna kuning terang;
As2O3 (aq) + 3H2S(g) à As2O3 (koloid) + 3H2O(l)
(Koloid As2S3 bermuatan negatif karena permukaannya menyerap ion S2-)
- Sol AgCl dibuat dengan mencampurkan larutan AgNO3 encer dan larutan HCl encer;
AgNO3 (ag) + HCl(aq) à AgCl (koloid) + HNO3 (aq)

* Reaksi hidrolisis

Hidrolisis adalah reaksi suatu zat dengan air. Misalanya:
- Sol Fe(OH3) dapat dibuat dengan hidrolisis larutan FeCl3 dengan memanaskan larutan FeCl3 atau reaksi hidrolisis garam Fe dalam air mendidih;
FeCl3 (aq) + 3H2O(l) à Fe(OH) 3 (koloid) + 3HCl(aq)
(Koloid Fe(OH)3 bermuatan positif karena permukaannya menyerap ion H+)

- Sol Al(OH)3 dapat diperoleh dari reaksi hidrolisis garam Al dalam air mendidih;
AlCl3 (aq) + 3H2O(l) à Al(OH) 3 (koloid) + 3HCl(aq)

* Reaksi reduksi-oksidasi (redoks)
Misalnya:
- Sol emas atau sol Au dapat dibuat dengan mereduksi larutan garamnya dengan melarutkan AuCl3 dalam pereduksi organic formaldehida HCOH;
2AuCl3 (aq) + HCOH(aq) + 3H2O(l) à 2Au(s) + HCOOH(aq) + 6HCl(aq)
- Sol belerang dapat dibuat dengan mereduksi SO2 yang terlarut dalam air dengan mengalirinya gas H2S ;
2H2S(g) + SO2 (aq) à 3S(s) + 2H2O(l)

* Penggatian pelarut
Cara ini dilakukan dengan mengganti medium pendispersi sehingga fasa terdispersi yang semulal arut setelah diganti pelarutanya menjadi berukuran koloid. Misalnya;
- untuk membuat sol belerang yang sukar larut dalam air tetapi mudah larut dalam alkohol seperti etanol dengan medium pendispersi air, belarang harus terlenih dahulu dilarutkan dalam etanol sampai jenuh. Baru kemudian larutan belerang dalam etanol tersebut ditambahkan sedikit demi sedikit ke dalam air sambil diaduk. Sehingga belerang akan menggumpal menjadi pertikel koloid dikarenakan penurunan kelarutan belerang dalam air.
- Sebaliknya, kalsium asetat yang sukar larut dalam etanol, mula-mula dilarutkan terlebih dahulu dalam air, kemudianbaru dalam larutan tersebut ditambahkan etanol maka terjadi kondensasi dan terbentuklah koloid kalsium asetat.


2. Metode Dispersi
Metode ini melibatkan pemecahan partikel-partikel kasar menjadi berukuran koloid yang kemudian akan didispersikan dalam medium pendispersinya. Ada 3 cara dalam metode ini, yaitu:

* Cara Mekanik
Cara mekanik adalah penghalusan partikel-partikel kasar zat padat dengan proses penggilingan untuk dapat membentuk partikel-partikel berukuran koloid. Alat yang digunakan untuk cara ini biasa disebut penggilingan koloid, yang biasa digunakan dalam:
- industri makanan untuk membuat jus buah, selai, krim, es krim,dsb.
- Industri kimia rumah tangga untuk membuat pasta gigi, semir sepatu, deterjen, dsb.
- Industri kimia untuk membuat pelumas padat, cat dan zat pewarna.
- Industri-industri lainnya seperti industri plastik, farmasi, tekstil, dan kertas.

Sistem kerja alat penggilingan koloid:
Alat ini memiliki 2 pelat baja dengan arah rotasi yang berlawanan. Partikel-partikel yang kasar akan digiling melalui ruang antara kedua pelat baja tersebut. Kemudian, terbentuklah partikel-partikel berukuran koloid yang kemudian didispersikan dalam medium pendispersinya untuk membentuk sistem koloid. Contoh kolid yang dibuat adalah; pelumas, tinta cetak, dsb.

* Cara peptisasi

Cara peptisasi adalah pembuatan koloid / sistem koloid dari butir-butir kasar atau dari suatu endapan / proses pendispersi endapan dengan bantuan suatu zat pemeptisasi (pemecah). Zat pemecah tersebut dapat berupa elektrolit khususnya yang mengandung ion sejenis ataupun pelarut tertentu.
Contoh:
- Agar-agar dipeptisasi oleh air ; karet oleh bensin.
- Endapan NiS dipeptisasi oleh H2S ; endapan Al(OH) 3 oleh AlCl3.
- Sol Fe(OH) 3 diperoleh dengan mengaduk endapan Fe(OH) 33 yang baru terbentuk dengan sedikit FeCl3. Sol Fe(OH) 3 kemudian dikelilingi Fe+3 sehingga bermuatan positif
- Beberapa zat mudah terdispersi dalam pelarut tertentu dan membnetuk sistem kolid. Contohnya; gelatin dalam air.

* Cara Busur Bredig
Cara busur Bredig ini biasanya digunakan untuk membuat sol-sol logam, sperti Ag, Au, dan Pt. Dalam cara ini, logam yang akan diubah menjadi partikel-partikel kolid akan digunakan sebagai elektrode. Kemudian kedua logam dicelupkan ke dalam medium pendispersinya (air suling dingin) sampai kedua ujungnya saling berdekatan. Kemudian, kedua elektrode akan diberi loncatan listrik. Panas yang timbul akan menyebabkan logam menguap, uapnya kemudian akan terkondensasi dalam medium pendispersi dingin, sehingga hasil kondensasi tersebut berupa pertikel-pertikel kolid. Karena logam diubah jadi partikel kolid dengan proses uap logam, maka metode ini dikategorikan sebagai metode dispersi.


PEMURNIAN KOLOID SOL

Seringkali terdapat zat-zat terlarut yang tidak diinginkan dalam suatu pembuatan suatu sistem koloid. Partikel-partikel tersebut haruslah dihilangkan atau dimurnikan guna menjaga kestabilan kolid. Ada beberapa metode pemurnian yang dapat digunakan, yaitu:

Dialisis

Dialisis adalah proses pemurnian partikel koloid dari muatan-muatan yang menempel pada permukaannya. Pada proses dialisis ini digunakan selaput semipermeabel. Pergerakan ion-ion dan molekul – molekul kecil melalui selaput semipermiabel disebut dialysis. Suatu koloid biasanya bercampur dengan ion-ion pengganggu, karena pertikel koloid memiliki sifat mengadsorbsi. Pemisahan ion penggangu dapat dilakukan dengan memasukkan koloid ke dalam kertas/membran semipermiabel (selofan), baru kemudian akan dialiri air yang mengalir. Karena diameter ion pengganggu jauh lebih kecil daripada kolid, ion pengganggu akan merembes melewati pori-pori kertas selofan, sedangkan partikel kolid akan tertinggal.
Proses dialisis untuk pemisahan partikel-partikel koloid dan zat terlarut dijadikan dasar bagi pengembangan dialisator. Salah satu aplikasi dialisator adalah sebagai mesin pencuci darah untuk penderita gagal ginjal. Jaringan ginjal bersifat semipermiabel, selaput ginjal hanya dapat dilewati oleh air dan molekul sederhana seperti urea, tetapi menahan partikel-partikel kolid seperti sel-sel darah merah.

Elektrodialisis
Pada dasarnya proses ini adalah proses dialysis di bawah pengaruh medan listrik. Cara kerjanya; listrik tegangan tinggi dialirkan melalui dua layer logam yang menyokong selaput semipermiabel. Sehingga pertikel-partikel zat terlarut dalam sistem koloid berupa ion-ion akan bergerak menuju elektrode dengan muatan berlawanan. Adanya pengaruh medanlistrik akanmempercepat proses pemurnian sistem koloid.
Elektrodialisis hanya dapat digunakan untuk memisahkan partikel-partikel zat terlarut elektrolit karena elektrodialisis melibatkan arus listrik.

Penyaring Ultra
Partikel-partikel kolid tidak dapat disaring biasa seperti kertas saring, karena pori-pori kertas saring terlalu besar dibandingkan ukuran partikel-partikel tersebut. Tetapi, bila kertas saring tersebut diresapi dengan selulosa seperti selofan, maka ukuran pori-pori kertas akan sering berkurang. Kertas saring yang dimodifikasi tersebut disebut penyaring ultra.
Proses pemurnian dengan menggunakan penyaring ultra ini termasuklambat, jadi tekanan harus dinaikkan untuk mempercepat proses ini. Terakhir, partikel-pertikel koloid akan teringgal di kertas saring. Partikel-partikel kolid akan dapat dipisahkan berdasarkan ukurannya, dengan menggunakan penyaring ultra bertahap.

Koloid Emulsi

KOLOID EMULSI

Emulsi adalah suatu sistem koloid yang fase terdispersinya dapat berupa zat padat, cair, dan gas, tapi kebanyakan adalah zat cair (contohnya: air dengan minyak). Pada umumnya emulsi kurang mantap, kemantapan emulsi dapat terlihat pada keadaannya yang selalu keruh seperti; susu, santan, dsb. Untuk memantapkan emulsi diperlukan zat pemantap yang disebut emulgator.

Emulsi Gas
Emulsi gas dapat disebut juga aerosol cair yang adalah emulsi dalam medium pendispersi gas. Pada aerosol cair, seperti; hairspray dan obat nyamuk dalam kemasan kaleng, untuk dapat membentuk system koloid atau menghasilkan semprot aerosol yang diperlukan, dibutuhkan bantuan bahan pendorong/ propelan aerosol, anatar lain; CFC (klorofuorokarbon atau Freon).
Aerosol cair juga memiliki sifat-sifat seperti sol liofob; efek Tyndall, gerak Brown, dan kestabilan denganmuatan partikel.
Contoh: dalam hutan yang lebat, cahaya matahari akan disebarkan oleh partikel-partikel koloid dari sistem koloid kabut à merupakan contoh efek Tyndall pada aerosol cair.

Emulsi Cair
Emulsi cair melibatkan dua zat cair yang tercampur, tetapi tidak dapat saling melarutkan, dapt juga disebut zat cair polar &zat cair non-polar. Biasanya salah satu zat cair ini adalah air (zat cair polar) dan zat lainnya; minyak (zat cair non-polar). Emulsi cair itu sendiri dapat digolongkan menjadi 2 jenis, yaitu; emulsi minyak dalam air (cth: susu yang terdiri dari lemak yang terdispersi dalam air,jadi butiran minyak di dalam air), atau emulsi air dalam minyak (cth: margarine yang terdiri dari air yang terdispersi dalam minyak, jadi butiran air dalam minyak).

Bagaimana air dan minyak dapat bercampur sehingga membentuk emulsi cair?
Air dan minyak dapat bercampur membentuk emulsi cair apabila suatu pengemulsi (emulgator) ditambahkan dalam larutan tersebut. Karena kebanyakan emulsi adalah dispersiair dalam mnyak, dan dispersiminyak dalam air, maka zat pengemulsi yang digunakan harus dapat larut dengan baik di dalam air maupun minyak. Contoh pengemulsi tersebut adalah senyawa organic yang memiliki gugus polar dan non-polar. Bagian non-polar akan berinteraksi dengan minyak/ mengelilingi partikel-partikel minyak, sedangkan bagian yang polar akan berinteraksi kuat dengan air.
Apabila bagian polar ini terionisasi menjadi bermuatan negative, maka pertikel-partikel minyak juga akan bermuatan negatif. Muatan tersebut akan mengakibatkan pertikel-partikel minyak saling tolak-menolak dan tidak akan bergabung, sehingga emulsi menjadi stabil.
Contohnya: ada sabun yang merupakan garam karboksilat. Molekul sabun tersusun dari “ekor” alkil yang non-polar (larut dalam minyak) dan kepala ion karboksilat yang polar (larut dalam air). Prinsip tersebut yang menyebabkan sabun dan deterjen memiliki daya pembersih. Ketika kita mandi atau mencuci pakaian, “ekor” non-polar dari sabun akan menempel pada kotoran dan kepala polarnya menempel pada air. Sehingga tegangan permukaan air akan semakin berkurang, sehingga air akan jauh lebih mudah untuk menarik kotoran.


Beberapa sifat emulsi yang penting:
- Demulsifikasi
Kestabilan emulsi cair dapat rusak apabila terjadi pemansan, proses sentrifugasi, pendinginan, penambahan elektrolit, dan perusakan zat pengemulsi. Krim atau creaming atau sedimentasi dapat terbentuk pada proses ini. Pembentukan krim dapat kita jumpai pada emulsi minyak dalam air, apabila kestabilan emulsi ini rusak,maka pertikel-partikel minyak akan naik ke atas membentuk krim. Sedangkan sedimentasi yang terjadi pada emulsi air dalam minyak; apabila kestabilan emulsi ini rusak, maka partikel-partikel air akan turun ke bawah. Contoh penggunaan proses ini adalah: penggunaan proses demulsifikasi dengan penmabahan elektrolit untukmemisahkan karet dalam lateks yang dilakukan dengan penambahan asam format (CHOOH) atau asam asetat (CH3COOH).
- Pengenceran
Dengan menambahkan sejumlah medium pendispersinya, emulsi dapat diencerkan. Sebaliknya, fase terdispersi yang dicampurkan akan dengan spontan membentuk lapisan terpisah. Sifat ini dapat dimanfaatkan untuk menentukan jenis emulsi.

Emulsi Padat atau gel
Gel adalah emulsi dalam medium pendispersi zat padat, dapat juga dianggap sebagai hasil bentukkan dari penggumpalan sebagian sol cair. Partikel-partikel sol akan bergabung untuk membentuk suatu rantai panjang pada proses penggumpalan ini. Rantai tersebut akan saling bertaut sehingga membentuk suatu struktur padatan di mana medium pendispersi cair terperangkap dalam lubang-lubang struktur tersebut. Sehingga, terbentuklah suatu massa berpori yang semi-padat dengan struktur gel. Ada dua jenis gel, yaitu:

(i) Gel elastis
Karena ikatan partikel pada rantai adalah adalah gaya tarik-menarik yang relatif tidak kuat, sehingga gel ini bersifat elastis. Maksudnya adalah gel ini dapat berubah bentuk jika diberi gaya dan dapat kembali ke bentuk awal bila gaya tersebut ditiadakan. Gel elastis dapat dibuat dengan mendinginkan sol iofil yang cukup pekat. Contoh gel elastis adalah gelatin dan sabun.
(ii) Gel non-elastis
Karena ikatan pada rantai berupa ikatan kovalen yang cukup kuat, maka gel ini dapat bersifat non-elastis. Maksudnya adalah gel ini tidak memiliki sifat elastis, gel ini tidak akan berubah jika diberi suatu gaya. Salah satu contoh gel ini adalah gel silica yang dapat dibuat dengan reaksi kia; menambahkan HCl pekat ke dalam larutan natrium silikat, sehingga molekul-molekul asam silikat yang terbentuk akan terpolimerisasi dan membentuk gel silika.

Beberapa sifat gel yang penting adalah:
- Hidrasi
Gel non-elastis yang terdehidrasi tidak dapat diubah kembali ke bentuk awalanya, tetapi sebaliknya, gel elastis yang terdehidrasi dapat diubah kembali menjadi gel elastis dengan menambahkan zat cair.
- Menggembung (swelling)
Gel elastis yang terdehidrasi sebagian akan menyerap air apabila dicelupkan ke dalam zat cair. Sehingga volum gel akan bertambah dan menggembung.
- Sineresis
Gel anorganik akan mengerut bila dibiarkan dan diikuti penetesan pelarut, dan proses ini disebut sineresis.
- Tiksotropi
Beberapa gel dapat diubah kembali menjadi sol cair apabila diberi agitasi atau diaduk. Sifat ini disebut tiksotropi. Contohnya adalah gel besi oksida, perak oksida, dsb.

Koloid Buih


KOLOID BUIH

Buih adalah koolid dengan fase terdisperasi gas dan medium pendisperasi zat cair atau zat padat. Baerdasarkan medium pendisperasinya, buih dikelompokkan menjadi dua, yaitu:

Buih Cair (Buih)
Buih cair adalah sistem koloid dengan fase terdisperasi gas dan dengan medium pendisperasi zat cair. Fase terdisperasi gas pada umumnya berupa udara atao karbondioksida yang terbetuk dari fermentasi. Kestabilan buih dapat diperoleh dari adanya zat pembuih (surfaktan). Zat ini teradsorbsi ke daerah antar-fase dan mengikat gelembung-gelembung gas sehingga diperoleh suatu kestabilan.
Ukuran kolid buih bukanlah ukuran gelembung gas seperti pada sistem kolid umumnya, tetapi adalah ketebalan film (lapisan tipis) pada daerah antar-fase dimana zat pembuih teradsorbsi, ukuran kolid berkisar 0,0000010 cm. Buih cair memiliki struktur yang tidak beraturan. Strukturnya ditentukan oleh kandungan zat cairnya, bukan oleh komposisi kimia atau ukuran buih rata-rata. Jika fraksi zat cair lebih dari 5%, gelembung gas akan mempunyai bentuk hamper seperti bola. Jika kurang dari 5%, maka bentuk gelembung gas adalah polihedral.

Beberapa sifat buih cair yang penting:
Struktur buih cair dapat berubah dengan waktu, karena:
- pemisahan medium pendispersi (zat cair) atau drainase, karena kerapatan gas dan zat cair yang jauh berbeda,
- terjadinya difusi gelembung gas yang kecil ke gelembung gas yang besar akibat tegangan permukaan, sehingga ukuran gelembung gas menjadi lebih besar,
- rusaknya film antara dua gelembung gas.
Struktur buih cair dapat berubah jika diberi gaya dari luar. Bila gaya yang diberikan kecil, maka struktur buih akan kembali ke bentuk awal setelah gaya tersebut ditiadakan.
Jika gaya yang diberikan cukup besar, maka akan terjadi deformasi.
Contoh buih cair:
- Buih hasil kocokan putih telur
Karen audara di sekitar putih telur akan teraduk dan menggunakan zat pembuih, yaitu p[rotein dan glikoprotein yang berasal dari putih telur itu sendiri untukmembentuk buih yang relative stabil. Sehingga putih telur yang dikocok akan mengembang.
- Buih hasil akibat pemadam kebakaran
Alat pemadam kebakaran mengandung campuran air, natrium bikarbonat, aluminium sulfat, serta suatu zat pembuih. Karbondioksida yang dilepas akan membentuk buih dengan bamtuam zat pembuih tersebut.

Buih Padat
Buih padat adalah sistem kolid dengan fase terdisperasi gas dan denganmedium pendisperasi zat padat. Kestabilan buih ini dapat diperoleh dari zat pembuih juga (surfaktan). Contoh-contoh buih padatyang mungkin kita ketahui:

- Roti
Proses peragian yang melepas gas karbondioksida terlibat dalam proses pembuatan roti. Zat pembuih protein gluten dari tepung kemudian akan membentuk lapisan tipis mengelilimgi gelembung-gelembung karbondioksida untuk membentuk buih padat.
- Batu apung
Dari proses solidifikasi gelas vulkanik, maka terbentuklah batu apung.
- Styrofoam
Styrofoam memiliki fase terdisperasi karbondioksida dan udara, serta medium pendisperasi polistirena.

Koloid Dalam Kehidupan Sehari-hari


KOLOID DALAM KEHIDUPAN SEHARI-HARI

Sifat karakteristik kolid yang penting, yaitu sangat bermanfaat untuk mencampur zat-zat yang tidak dapat saling melarutkan secara homogen dan bersifat stabil untuk produksi skala besar. Oleh karena sifat tersebut, sistem koloid menjadi banyak kita jumpai dalam industri (aplikasi kolid untuk produksi cukup luas). Tetapi selain industri, sistem koloid juga banyak dapat kita jumpai dsalam kehidupan kita sehari-hari, contohnya saja di alam, kedokteran, pertanian, dsb;
- Penggumpalan darah
Darah mengandung sejumlah kolid protein yangbermuatan negative. Jika terdapat luka kecil, maka luka tersebut dapat doibati dengan pensil stiptik atau tawas yang mengandung ion-ion Al+3 dan Fe+3, dimana ion-ion tersebut akan membantu menetralkan muatan-muatan partikel koloid protein danmembnatu penggumpalan darah.
- Pembentukan delta di muara sungai
Air sungai mengandung partikel-partikel koloid pasir dan tanah liat yang bermuatan negatif.
Sedangkan air laut mengandung ion-ion Na+, Mg+2, dan Ca+2 yang bermuatan positif. Ketika air sungai bertemu di laut, maka ion-ion positif dari air laut akanmenetralkan muatan pasir dan tanah liat. Sehingga, terjadi koagulasi yang akan membentuk suatu delta.
- Pengambilan endapan pengotor
Gas atau udara yang dialirkan ke dalam suatu proses industri seringkali mangandung zat-zat pengotor berupa partikel-partikel koloid. Untukmemisahkan pengotor ini, digunakan alat pengendap elektrostatik yang pelat logamnya yang bermuatan akan digunakan untuk menarik partikel-partikel koloid.
- Pemutihan gula
Dengan melarutkan gula ke dalam air, kemudian larutan dialirkan melalui sistem koloid tanah diatomae atau karbon, partikel-partikel koloid kemudian akan mengadsorbsi zat warna tersebut.
Sehingga gula tebu yang masih berwarna dapat diputihkan.

Koloid Dalam Kehidupan Sehari-hari


KOLOID DALAM KEHIDUPAN SEHARI-HARI

Sifat karakteristik kolid yang penting, yaitu sangat bermanfaat untuk mencampur zat-zat yang tidak dapat saling melarutkan secara homogen dan bersifat stabil untuk produksi skala besar. Oleh karena sifat tersebut, sistem koloid menjadi banyak kita jumpai dalam industri (aplikasi kolid untuk produksi cukup luas). Tetapi selain industri, sistem koloid juga banyak dapat kita jumpai dsalam kehidupan kita sehari-hari, contohnya saja di alam, kedokteran, pertanian, dsb;
- Penggumpalan darah
Darah mengandung sejumlah kolid protein yangbermuatan negative. Jika terdapat luka kecil, maka luka tersebut dapat doibati dengan pensil stiptik atau tawas yang mengandung ion-ion Al+3 dan Fe+3, dimana ion-ion tersebut akan membantu menetralkan muatan-muatan partikel koloid protein danmembnatu penggumpalan darah.
- Pembentukan delta di muara sungai
Air sungai mengandung partikel-partikel koloid pasir dan tanah liat yang bermuatan negatif.
Sedangkan air laut mengandung ion-ion Na+, Mg+2, dan Ca+2 yang bermuatan positif. Ketika air sungai bertemu di laut, maka ion-ion positif dari air laut akanmenetralkan muatan pasir dan tanah liat. Sehingga, terjadi koagulasi yang akan membentuk suatu delta.
- Pengambilan endapan pengotor
Gas atau udara yang dialirkan ke dalam suatu proses industri seringkali mangandung zat-zat pengotor berupa partikel-partikel koloid. Untukmemisahkan pengotor ini, digunakan alat pengendap elektrostatik yang pelat logamnya yang bermuatan akan digunakan untuk menarik partikel-partikel koloid.
- Pemutihan gula
Dengan melarutkan gula ke dalam air, kemudian larutan dialirkan melalui sistem koloid tanah diatomae atau karbon, partikel-partikel koloid kemudian akan mengadsorbsi zat warna tersebut.
Sehingga gula tebu yang masih berwarna dapat diputihkan.


Koloid Sol

SIFAT-SIFAT KOLOID SOL

a. Efek Tyndall
Sifat pengahamburan cahaya oleh koloid di temukan oleh John Tyndall, oleh karena itu sifat ini dinamakan Tyndall. Efek dari Tyndall digunakan untuk membedakan system koloid dari larutan sejati, contoh dalam kehidupan sehari – hari dapat diamati dari langit yang tampak berwarna biru atau terkandang merah/oranye.
Selain itu contoh lainnya adalah pada koloid kanji dan larutan Na2Cr2O7, maka sinar dihamburkan oleh system koloid tetapi tidak dihamburkan oleh larutan sejati hal ini dapat dilihat terdapat berkas sinar pada larutan. Larutan koloid kanji memiliki partikel-partikel koloid relatif besar untuk dapat menhamburkan sinar dan sebaliknya Na2Cr2O7 memiliki partikel-partikel yang relatif kecil sehingga hamburan yang terjadi sedikit kecil dan sulit diamati.

b. Gerak Brown
Dibawah mikroskop ultra, partikel koloid akan tampak sebagai titik cahaya. Jika pergerakan titik cahaya atau partikel tersebut diikuti, partikel itu bergerak terus-menerus dengan gerakan zigzag.
Hal ini pertama kali diamati oleh Robert Brown (1773-1858), seorang ahli botani inggris pada tahun 1827. Ia sedang mengamati butiran sari tumbuhan pada permukaan air dean mikroskop. Partikel koloid dalam medium pendispersinya disebut gerak brown.

Bagaimana gerak brown dijelaskan?
Partikel – partikel suatu zat senantiasa bergerak. Gerakan tersebut bersifat acak seperti pada zat cair dan gas. System koloid dengan medium pendipersi zat cair atau gas, partikel-partikel menghasilkan tumbukan. Tumbukan tersebut berlangsung dari segala arah. Partikel koloid cukup kecil, tumbukan cenderung tidak seimbang. Dan menyebabkan perubahan arah partikel sehingga terjadi gerak zigzag atau gerak brown.
Semakin kecil ukuran partikel koloid, semakin cepat gerak brown. Semakin besar ukuran partikel, semakin lambat gerak brown.
Gerak Brown dipengerahui oleh suhu. Semakin tinggi suhu system, koloid, semakin besar energi kinektik yang dimiliki partikel medium. Akibatnya, gerak Brown dari partikel fase terdispersinya semakin cepat. Semakin rendah suhu system koloid, maka gerak Brown semakin lambat.

c. Adsorpsi koloid
Partikel sol padat ditempatkan dalam zat cair atau gas, maka partikel zat cair atau gas akan terakumulasi. Fenomena disebut adsorpsi. Jadi sdsorpsi terkait dengan penyerapan partikel pada permukaan zat. Partikel koloid sol memiliki kemampuan untuk mengadsorpsi partikel pendispersi pada permukaanya. Daya adsorpsi partikel koloid tergolong besar Karenna partikelnya memberikan sesuatu permukaan yang luas. Sifat ini telah digunakan dalam berbagai proses seperti penjernihan air.

d. Muatan koloid sol
Sifat koloid terpenting adalah muatan partikel koloid.
Semua partikel koloid memiliki muatan sejenis (positif dan negatif). Maka terdapat gaya tolak menolak antar partikel koloid. Partikel koloid tidak dapat bergabung sehingga memberikan kestabilan pada sistem koloid. Sistem koloid secara keseluruhan bersifat netral.

i. Sumber muatan koloid sol
Partikel-partikel koloid mendapat mutan listrik melalui dua cara, yaitu dengan proses adsorpsi dan proses ionisasi gugus permukaan partikelnya.
- Proses adsorpsi
Partikel koloiddapat mengadsorpsi partikel bermuatan dari fase pendispersinya. Jenis muatan tergantung dari jenis partikel yang bermuatan. Partikel sol Fel (OH)3 kemampuan untuk mengadsorpsi kation dari medium pendisperinya sehingga bermuatan positif, sedangkal partikel sol As2S3 mengadsorpsi anion dari medium pendispersinya sehingga bermuatan negatif.
Sol AgCI dalam medium pendispersi dengan kation Ag+ berlebihan akan mengadsorpsi Ag+ sehingga bermuatan positif. Jika anion CI- berlebih, maka sol AgCI akan mengadsorpsi ion CI- sehingga bermuatan positif.

- Proses ionisasi gugus permukaan partikel
Beberapa partikel koloid memperoleh muatan dari proses ionisasi gugus-gugus yang ada pada permukaan partikel koloid.

Ø Koloid protein
Koloid protein adalah jenis koloid sol yang mempunyai gugus yang bersifat asam (-COOH) dan biasa (-NH2). Kedua gugus ini dapat terionisasi dan memberikan muatan pada molekul protein.
Pada ph rendah , gugus basa –NH2 akan menerima proton dan membentuk gugus –NH3. Ph tinggi, gugus –COOH akan mendonorkan proton dan membentuk gugus – COO-. Pada ph intermediet partikel protein bermuatan netral karena muatan –NH3+ dan COO- saling meniadakan.

Ø Koloid sabun dan deterjen
Pada konsentrasi relatif pekat, molekul ini dapat bergabung membentuk partikel berukuran koloid yang disebut misel. Zat yang molejulnya bergabung secara spontan dalam suatu fase pendispersi dan membentuk partikel berukuran koloid disebut koloid terasosiasi.
Sabun adalah garam karboksilat dengan rumus R-COO-Na+.
Anion R-COO- terdiri dari gugus R- yang bersifat non pola. Gugus R- atau ekor non-polar tidak larut dalam air sehingga akan terorientasi ke pusat.

ii. Kestabilan koloid

Muatan partikel koloid adalah sejenis cenderung karena sering tolak-monolak.

iii.Lapisan bermutar ganda
Permukaan partikel Koloid mendapat muatan bahwa partikel-partikel. lapisan bermuatan listrik ini selanjutnya akan menarik ion-ion dengan

Bagaimana sebenarnya struktur dari lapisan bermuatan ganda ini?
Permukaan lapisan ganda ini mengikuti model Helmoslzt. Sekarang model yang lebih akurat adalah :
Lapisan padat : koloid menarik ion-ion dengan muatan yang berlawanan.
Lapisandifusi : merupakan lapisan dimana muatan berlawanan dari medium pendispersi difusi

iv.Elektroforesis :
Partikel koloid sol bermuatan listrik, maka partikel ini akan bergerak dalm medan listrik. Pergerakan partikel koloid dalam medan listrik disebut elektrofesis.
Femonema elektroforesis dapat digunakan untuk menentukan jenis muatan partikel koloid.

e. Koagulasi
Partikel-partikel koloid yang bersifat stabil karena memiliki muatan listrik sejenis. Apabila muatan listrik itu hilang , maka partikel koloid tersebut akan bergabung membentuk gumpalan. Proses penggumpalan partikel koloid dan pengendapannya disebut Koagulasi.
Penghilangan muatan listrik pada partikel koloid ini dapat dilakukan empat cara yaitu :
i. Menggunakan prinsip elektroforesis
Proses elektroforesis adaalh pergerakan partikel koloid yang bermuatan ke electrode dengan muatan berlawanan. Ketika partikel mencapai electrode, maka partikel akan kehilangan muatannya.

ii. Penambahan koloid lain dengan muatan berlawanan

Sistem koloid bermuatan positif dicampur dengan sistem koloid lain yang bermuatan negatif, kedua koloid tersebut akan saling mengadsorpsi menjadi netral maka terbentuk kogulasi.

iii.Penambahan elektrolit
Elektrolit ditambahkan kedalam sistem koloid maka partikel koloid yang bermuatan negatif akan menarik ion positif dari elektrolit. Partikel koloid yang bermuatan positif akan menarik ion negatif dari elektrolit. Menyebabkan partikel koloid tersebut dikelilingi lapisan kedua yang memiliki muatan berlawanan.

iv.Pendidihan
Kenaikan suhu sistem koloid menyebabkan jumlah tumbukan antara partikel-partikel sol dengan molekul-molekul air bertambah banyak. Menyebabkan lepasnya elekrolit yang teradsorpsi pada permukaan koloid.


f. Koloid pelindung
- Sistem koloid dimana partikel terdisperesinya mempunyai daya adsorpsi yang relatif besar disebut koloid liofil.
- Sistem koloid dimana partikel terdisperesinya mempunyai daya adsorpsi yang relatif kecil disebut koloid liofob.
- Koloid lioil bersifat stabil, sedangkan koloid liofob kurang stabil. Koloid liofil yang berfungsi sebagai koloid pelindung.


PEMBUATAN KOLOID SOL

Ukuran partikel koloid berada di antara partikel larutan dan suspensi, karena itu cara pembuatannya dapat dilakukan dengan memperbesar partikel larutan atau memperkecil partikel suspensi. Maka dari itu, ada dua metode dasar dalam pembuatan iystem koloid sol, yaitu:
- Metode kondensasi yang merupakan metode bergabungnya partikel-partikel kecil larutan sejati yang membentuk partikel-partikel berukuran koloid.
- Metode dispersi yang merupakan metode dipecahnya partikel-partikel besar sehingga menjadi partikel-partikel berukuran koloid.


Metode Kondensasi
Pembuatan koloid sol dengan metode ini pada umumnya dilakukan dengan cara kimia (dekomposisi rangkap, hidrolisis, dan redoks) atau dengan penggatian pelarut. Cara kimia tersebut bekerja dengan menggabungkan partikel-partikel larutan (atom, ion, atau molekul) menjadi pertikel-partikel berukuran koloid.

* Reaksi dekomposisi rangkap
Misalnya:
- Sol As2S3 dibuat dengan gaya mengalirkan H2S dengan perlahan-lahan melalui larutan As2O3 dingin sampai terbentuk sol As2S3 yang berwarna kuning terang;
As2O3 (aq) + 3H2S(g) à As2O3 (koloid) + 3H2O(l)
(Koloid As2S3 bermuatan negatif karena permukaannya menyerap ion S2-)
- Sol AgCl dibuat dengan mencampurkan larutan AgNO3 encer dan larutan HCl encer;
AgNO3 (ag) + HCl(aq) à AgCl (koloid) + HNO3 (aq)

* Reaksi hidrolisis

Hidrolisis adalah reaksi suatu zat dengan air. Misalanya:
- Sol Fe(OH3) dapat dibuat dengan hidrolisis larutan FeCl3 dengan memanaskan larutan FeCl3 atau reaksi hidrolisis garam Fe dalam air mendidih;
FeCl3 (aq) + 3H2O(l) à Fe(OH) 3 (koloid) + 3HCl(aq)
(Koloid Fe(OH)3 bermuatan positif karena permukaannya menyerap ion H+)

- Sol Al(OH)3 dapat diperoleh dari reaksi hidrolisis garam Al dalam air mendidih;
AlCl3 (aq) + 3H2O(l) à Al(OH) 3 (koloid) + 3HCl(aq)

* Reaksi reduksi-oksidasi (redoks)
Misalnya:
- Sol emas atau sol Au dapat dibuat dengan mereduksi larutan garamnya dengan melarutkan AuCl3 dalam pereduksi organic formaldehida HCOH;
2AuCl3 (aq) + HCOH(aq) + 3H2O(l) à 2Au(s) + HCOOH(aq) + 6HCl(aq)
- Sol belerang dapat dibuat dengan mereduksi SO2 yang terlarut dalam air dengan mengalirinya gas H2S ;
2H2S(g) + SO2 (aq) à 3S(s) + 2H2O(l)

* Penggatian pelarut
Cara ini dilakukan dengan mengganti medium pendispersi sehingga fasa terdispersi yang semulal arut setelah diganti pelarutanya menjadi berukuran koloid. Misalnya;
- untuk membuat sol belerang yang sukar larut dalam air tetapi mudah larut dalam alkohol seperti etanol dengan medium pendispersi air, belarang harus terlenih dahulu dilarutkan dalam etanol sampai jenuh. Baru kemudian larutan belerang dalam etanol tersebut ditambahkan sedikit demi sedikit ke dalam air sambil diaduk. Sehingga belerang akan menggumpal menjadi pertikel koloid dikarenakan penurunan kelarutan belerang dalam air.
- Sebaliknya, kalsium asetat yang sukar larut dalam etanol, mula-mula dilarutkan terlebih dahulu dalam air, kemudianbaru dalam larutan tersebut ditambahkan etanol maka terjadi kondensasi dan terbentuklah koloid kalsium asetat.


2. Metode Dispersi
Metode ini melibatkan pemecahan partikel-partikel kasar menjadi berukuran koloid yang kemudian akan didispersikan dalam medium pendispersinya. Ada 3 cara dalam metode ini, yaitu:

* Cara Mekanik
Cara mekanik adalah penghalusan partikel-partikel kasar zat padat dengan proses penggilingan untuk dapat membentuk partikel-partikel berukuran koloid. Alat yang digunakan untuk cara ini biasa disebut penggilingan koloid, yang biasa digunakan dalam:
- industri makanan untuk membuat jus buah, selai, krim, es krim,dsb.
- Industri kimia rumah tangga untuk membuat pasta gigi, semir sepatu, deterjen, dsb.
- Industri kimia untuk membuat pelumas padat, cat dan zat pewarna.
- Industri-industri lainnya seperti industri plastik, farmasi, tekstil, dan kertas.

Sistem kerja alat penggilingan koloid:
Alat ini memiliki 2 pelat baja dengan arah rotasi yang berlawanan. Partikel-partikel yang kasar akan digiling melalui ruang antara kedua pelat baja tersebut. Kemudian, terbentuklah partikel-partikel berukuran koloid yang kemudian didispersikan dalam medium pendispersinya untuk membentuk sistem koloid. Contoh kolid yang dibuat adalah; pelumas, tinta cetak, dsb.

* Cara peptisasi

Cara peptisasi adalah pembuatan koloid / sistem koloid dari butir-butir kasar atau dari suatu endapan / proses pendispersi endapan dengan bantuan suatu zat pemeptisasi (pemecah). Zat pemecah tersebut dapat berupa elektrolit khususnya yang mengandung ion sejenis ataupun pelarut tertentu.
Contoh:
- Agar-agar dipeptisasi oleh air ; karet oleh bensin.
- Endapan NiS dipeptisasi oleh H2S ; endapan Al(OH) 3 oleh AlCl3.
- Sol Fe(OH) 3 diperoleh dengan mengaduk endapan Fe(OH) 33 yang baru terbentuk dengan sedikit FeCl3. Sol Fe(OH) 3 kemudian dikelilingi Fe+3 sehingga bermuatan positif
- Beberapa zat mudah terdispersi dalam pelarut tertentu dan membnetuk sistem kolid. Contohnya; gelatin dalam air.

* Cara Busur Bredig
Cara busur Bredig ini biasanya digunakan untuk membuat sol-sol logam, sperti Ag, Au, dan Pt. Dalam cara ini, logam yang akan diubah menjadi partikel-partikel kolid akan digunakan sebagai elektrode. Kemudian kedua logam dicelupkan ke dalam medium pendispersinya (air suling dingin) sampai kedua ujungnya saling berdekatan. Kemudian, kedua elektrode akan diberi loncatan listrik. Panas yang timbul akan menyebabkan logam menguap, uapnya kemudian akan terkondensasi dalam medium pendispersi dingin, sehingga hasil kondensasi tersebut berupa pertikel-pertikel kolid. Karena logam diubah jadi partikel kolid dengan proses uap logam, maka metode ini dikategorikan sebagai metode dispersi.


PEMURNIAN KOLOID SOL

Seringkali terdapat zat-zat terlarut yang tidak diinginkan dalam suatu pembuatan suatu sistem koloid. Partikel-partikel tersebut haruslah dihilangkan atau dimurnikan guna menjaga kestabilan kolid. Ada beberapa metode pemurnian yang dapat digunakan, yaitu:

Dialisis

Dialisis adalah proses pemurnian partikel koloid dari muatan-muatan yang menempel pada permukaannya. Pada proses dialisis ini digunakan selaput semipermeabel. Pergerakan ion-ion dan molekul – molekul kecil melalui selaput semipermiabel disebut dialysis. Suatu koloid biasanya bercampur dengan ion-ion pengganggu, karena pertikel koloid memiliki sifat mengadsorbsi. Pemisahan ion penggangu dapat dilakukan dengan memasukkan koloid ke dalam kertas/membran semipermiabel (selofan), baru kemudian akan dialiri air yang mengalir. Karena diameter ion pengganggu jauh lebih kecil daripada kolid, ion pengganggu akan merembes melewati pori-pori kertas selofan, sedangkan partikel kolid akan tertinggal.
Proses dialisis untuk pemisahan partikel-partikel koloid dan zat terlarut dijadikan dasar bagi pengembangan dialisator. Salah satu aplikasi dialisator adalah sebagai mesin pencuci darah untuk penderita gagal ginjal. Jaringan ginjal bersifat semipermiabel, selaput ginjal hanya dapat dilewati oleh air dan molekul sederhana seperti urea, tetapi menahan partikel-partikel kolid seperti sel-sel darah merah.

Elektrodialisis
Pada dasarnya proses ini adalah proses dialysis di bawah pengaruh medan listrik. Cara kerjanya; listrik tegangan tinggi dialirkan melalui dua layer logam yang menyokong selaput semipermiabel. Sehingga pertikel-partikel zat terlarut dalam sistem koloid berupa ion-ion akan bergerak menuju elektrode dengan muatan berlawanan. Adanya pengaruh medanlistrik akanmempercepat proses pemurnian sistem koloid.
Elektrodialisis hanya dapat digunakan untuk memisahkan partikel-partikel zat terlarut elektrolit karena elektrodialisis melibatkan arus listrik.

Penyaring Ultra
Partikel-partikel kolid tidak dapat disaring biasa seperti kertas saring, karena pori-pori kertas saring terlalu besar dibandingkan ukuran partikel-partikel tersebut. Tetapi, bila kertas saring tersebut diresapi dengan selulosa seperti selofan, maka ukuran pori-pori kertas akan sering berkurang. Kertas saring yang dimodifikasi tersebut disebut penyaring ultra.
Proses pemurnian dengan menggunakan penyaring ultra ini termasuklambat, jadi tekanan harus dinaikkan untuk mempercepat proses ini. Terakhir, partikel-pertikel koloid akan teringgal di kertas saring. Partikel-partikel kolid akan dapat dipisahkan berdasarkan ukurannya, dengan menggunakan penyaring ultra bertahap.


Koloid Emulsi

KOLOID EMULSI

Emulsi adalah suatu sistem koloid yang fase terdispersinya dapat berupa zat padat, cair, dan gas, tapi kebanyakan adalah zat cair (contohnya: air dengan minyak). Pada umumnya emulsi kurang mantap, kemantapan emulsi dapat terlihat pada keadaannya yang selalu keruh seperti; susu, santan, dsb. Untuk memantapkan emulsi diperlukan zat pemantap yang disebut emulgator.

Emulsi Gas
Emulsi gas dapat disebut juga aerosol cair yang adalah emulsi dalam medium pendispersi gas. Pada aerosol cair, seperti; hairspray dan obat nyamuk dalam kemasan kaleng, untuk dapat membentuk system koloid atau menghasilkan semprot aerosol yang diperlukan, dibutuhkan bantuan bahan pendorong/ propelan aerosol, anatar lain; CFC (klorofuorokarbon atau Freon).
Aerosol cair juga memiliki sifat-sifat seperti sol liofob; efek Tyndall, gerak Brown, dan kestabilan denganmuatan partikel.
Contoh: dalam hutan yang lebat, cahaya matahari akan disebarkan oleh partikel-partikel koloid dari sistem koloid kabut à merupakan contoh efek Tyndall pada aerosol cair.

Emulsi Cair
Emulsi cair melibatkan dua zat cair yang tercampur, tetapi tidak dapat saling melarutkan, dapt juga disebut zat cair polar &zat cair non-polar. Biasanya salah satu zat cair ini adalah air (zat cair polar) dan zat lainnya; minyak (zat cair non-polar). Emulsi cair itu sendiri dapat digolongkan menjadi 2 jenis, yaitu; emulsi minyak dalam air (cth: susu yang terdiri dari lemak yang terdispersi dalam air,jadi butiran minyak di dalam air), atau emulsi air dalam minyak (cth: margarine yang terdiri dari air yang terdispersi dalam minyak, jadi butiran air dalam minyak).

Bagaimana air dan minyak dapat bercampur sehingga membentuk emulsi cair?
Air dan minyak dapat bercampur membentuk emulsi cair apabila suatu pengemulsi (emulgator) ditambahkan dalam larutan tersebut. Karena kebanyakan emulsi adalah dispersiair dalam mnyak, dan dispersiminyak dalam air, maka zat pengemulsi yang digunakan harus dapat larut dengan baik di dalam air maupun minyak. Contoh pengemulsi tersebut adalah senyawa organic yang memiliki gugus polar dan non-polar. Bagian non-polar akan berinteraksi dengan minyak/ mengelilingi partikel-partikel minyak, sedangkan bagian yang polar akan berinteraksi kuat dengan air.
Apabila bagian polar ini terionisasi menjadi bermuatan negative, maka pertikel-partikel minyak juga akan bermuatan negatif. Muatan tersebut akan mengakibatkan pertikel-partikel minyak saling tolak-menolak dan tidak akan bergabung, sehingga emulsi menjadi stabil.
Contohnya: ada sabun yang merupakan garam karboksilat. Molekul sabun tersusun dari “ekor” alkil yang non-polar (larut dalam minyak) dan kepala ion karboksilat yang polar (larut dalam air). Prinsip tersebut yang menyebabkan sabun dan deterjen memiliki daya pembersih. Ketika kita mandi atau mencuci pakaian, “ekor” non-polar dari sabun akan menempel pada kotoran dan kepala polarnya menempel pada air. Sehingga tegangan permukaan air akan semakin berkurang, sehingga air akan jauh lebih mudah untuk menarik kotoran.


Beberapa sifat emulsi yang penting:
- Demulsifikasi
Kestabilan emulsi cair dapat rusak apabila terjadi pemansan, proses sentrifugasi, pendinginan, penambahan elektrolit, dan perusakan zat pengemulsi. Krim atau creaming atau sedimentasi dapat terbentuk pada proses ini. Pembentukan krim dapat kita jumpai pada emulsi minyak dalam air, apabila kestabilan emulsi ini rusak,maka pertikel-partikel minyak akan naik ke atas membentuk krim. Sedangkan sedimentasi yang terjadi pada emulsi air dalam minyak; apabila kestabilan emulsi ini rusak, maka partikel-partikel air akan turun ke bawah. Contoh penggunaan proses ini adalah: penggunaan proses demulsifikasi dengan penmabahan elektrolit untukmemisahkan karet dalam lateks yang dilakukan dengan penambahan asam format (CHOOH) atau asam asetat (CH3COOH).
- Pengenceran
Dengan menambahkan sejumlah medium pendispersinya, emulsi dapat diencerkan. Sebaliknya, fase terdispersi yang dicampurkan akan dengan spontan membentuk lapisan terpisah. Sifat ini dapat dimanfaatkan untuk menentukan jenis emulsi.

Emulsi Padat atau gel
Gel adalah emulsi dalam medium pendispersi zat padat, dapat juga dianggap sebagai hasil bentukkan dari penggumpalan sebagian sol cair. Partikel-partikel sol akan bergabung untuk membentuk suatu rantai panjang pada proses penggumpalan ini. Rantai tersebut akan saling bertaut sehingga membentuk suatu struktur padatan di mana medium pendispersi cair terperangkap dalam lubang-lubang struktur tersebut. Sehingga, terbentuklah suatu massa berpori yang semi-padat dengan struktur gel. Ada dua jenis gel, yaitu:

(i) Gel elastis
Karena ikatan partikel pada rantai adalah adalah gaya tarik-menarik yang relatif tidak kuat, sehingga gel ini bersifat elastis. Maksudnya adalah gel ini dapat berubah bentuk jika diberi gaya dan dapat kembali ke bentuk awal bila gaya tersebut ditiadakan. Gel elastis dapat dibuat dengan mendinginkan sol iofil yang cukup pekat. Contoh gel elastis adalah gelatin dan sabun.
(ii) Gel non-elastis
Karena ikatan pada rantai berupa ikatan kovalen yang cukup kuat, maka gel ini dapat bersifat non-elastis. Maksudnya adalah gel ini tidak memiliki sifat elastis, gel ini tidak akan berubah jika diberi suatu gaya. Salah satu contoh gel ini adalah gel silica yang dapat dibuat dengan reaksi kia; menambahkan HCl pekat ke dalam larutan natrium silikat, sehingga molekul-molekul asam silikat yang terbentuk akan terpolimerisasi dan membentuk gel silika.

Beberapa sifat gel yang penting adalah:
- Hidrasi
Gel non-elastis yang terdehidrasi tidak dapat diubah kembali ke bentuk awalanya, tetapi sebaliknya, gel elastis yang terdehidrasi dapat diubah kembali menjadi gel elastis dengan menambahkan zat cair.
- Menggembung (swelling)
Gel elastis yang terdehidrasi sebagian akan menyerap air apabila dicelupkan ke dalam zat cair. Sehingga volum gel akan bertambah dan menggembung.
- Sineresis
Gel anorganik akan mengerut bila dibiarkan dan diikuti penetesan pelarut, dan proses ini disebut sineresis.
- Tiksotropi
Beberapa gel dapat diubah kembali menjadi sol cair apabila diberi agitasi atau diaduk. Sifat ini disebut tiksotropi. Contohnya adalah gel besi oksida, perak oksida, dsb.


Koloid Buih


KOLOID BUIH

Buih adalah koolid dengan fase terdisperasi gas dan medium pendisperasi zat cair atau zat padat. Baerdasarkan medium pendisperasinya, buih dikelompokkan menjadi dua, yaitu:

Buih Cair (Buih)
Buih cair adalah sistem koloid dengan fase terdisperasi gas dan dengan medium pendisperasi zat cair. Fase terdisperasi gas pada umumnya berupa udara atao karbondioksida yang terbetuk dari fermentasi. Kestabilan buih dapat diperoleh dari adanya zat pembuih (surfaktan). Zat ini teradsorbsi ke daerah antar-fase dan mengikat gelembung-gelembung gas sehingga diperoleh suatu kestabilan.
Ukuran kolid buih bukanlah ukuran gelembung gas seperti pada sistem kolid umumnya, tetapi adalah ketebalan film (lapisan tipis) pada daerah antar-fase dimana zat pembuih teradsorbsi, ukuran kolid berkisar 0,0000010 cm. Buih cair memiliki struktur yang tidak beraturan. Strukturnya ditentukan oleh kandungan zat cairnya, bukan oleh komposisi kimia atau ukuran buih rata-rata. Jika fraksi zat cair lebih dari 5%, gelembung gas akan mempunyai bentuk hamper seperti bola. Jika kurang dari 5%, maka bentuk gelembung gas adalah polihedral.

Beberapa sifat buih cair yang penting:
Struktur buih cair dapat berubah dengan waktu, karena:
- pemisahan medium pendispersi (zat cair) atau drainase, karena kerapatan gas dan zat cair yang jauh berbeda,
- terjadinya difusi gelembung gas yang kecil ke gelembung gas yang besar akibat tegangan permukaan, sehingga ukuran gelembung gas menjadi lebih besar,
- rusaknya film antara dua gelembung gas.
Struktur buih cair dapat berubah jika diberi gaya dari luar. Bila gaya yang diberikan kecil, maka struktur buih akan kembali ke bentuk awal setelah gaya tersebut ditiadakan.
Jika gaya yang diberikan cukup besar, maka akan terjadi deformasi.
Contoh buih cair:
- Buih hasil kocokan putih telur
Karen audara di sekitar putih telur akan teraduk dan menggunakan zat pembuih, yaitu p[rotein dan glikoprotein yang berasal dari putih telur itu sendiri untukmembentuk buih yang relative stabil. Sehingga putih telur yang dikocok akan mengembang.
- Buih hasil akibat pemadam kebakaran
Alat pemadam kebakaran mengandung campuran air, natrium bikarbonat, aluminium sulfat, serta suatu zat pembuih. Karbondioksida yang dilepas akan membentuk buih dengan bamtuam zat pembuih tersebut.

Buih Padat
Buih padat adalah sistem kolid dengan fase terdisperasi gas dan denganmedium pendisperasi zat padat. Kestabilan buih ini dapat diperoleh dari zat pembuih juga (surfaktan). Contoh-contoh buih padatyang mungkin kita ketahui:

- Roti
Proses peragian yang melepas gas karbondioksida terlibat dalam proses pembuatan roti. Zat pembuih protein gluten dari tepung kemudian akan membentuk lapisan tipis mengelilimgi gelembung-gelembung karbondioksida untuk membentuk buih padat.
- Batu apung
Dari proses solidifikasi gelas vulkanik, maka terbentuklah batu apung.
- Styrofoam
Styrofoam memiliki fase terdisperasi karbondioksida dan udara, serta medium pendisperasi polistirena.
A.KOLOID
Sistem koloid adalah suatu bentuk campuran yang keadaannya terletak antara larutan dan suspensi (campuran kasar). Sistem koloid ini mempunyai sifat-sifat khas yang berbeda dari sifat larutan atau suspensi.
Keadaan koloid bukan ciri dari zat tertentu karena semua zat, baik padat, cair, maupun gas, dapat dibuat dalam keadaan koloid.
Sistem koloid sangat berkaitan erat dengan hidup dan kehidupan kita sehari-hari. Cairan tubuh, seperti darah adalah sistem koloid, bahan makanan seperti susu, keju, nasi, dan roti adalah sistem koloid. Cat, berbagai jenis obat, bahan kosmetik, tanah pertanian juga merupakan sistem koloid.
Karena sistem koloid sangat berpengaruh bagi kehidupan sehari-hari, kita harus mempelajarinya lebih mendalam agar kita dapat menggunakannya dengan benar dan dapat bermanfaat untuk diri kita.

Koloid adalah suatu sistem campuran “metastabil” (seolah-olah stabil, tapi akan memisah setelah waktu tertentu). Koloid berbeda dengan larutan; larutan bersifat stabil.
Di dalam larutan koloid secara umum, ada 2 zat sebagai berikut :
- Zat terdispersi, yakni zat yang terlarut di dalam larutan koloid
- Zat pendispersi, yakni zat pelarut di dalam larutan koloid
Berdasarkan fase terdispersi maupun fase pendispersi suatu koloid dibagi sebagai berikut :
Fase Terdispersi
Pendispersi
Nama koloid
Contoh
Gas
Gas
Bukan koloid, karena gas bercampur secara homogen
Gas
Cair
Busa
Buih, sabun, ombak, krim kocok
Gas
Padat
Busa padat
Batu apung, kasur busa
Cair
Gas
Aerosol cair
Obat semprot, kabut, hair spray di udara
Cair
Cair
Emulsi
Air santan, air susu, mayones
Cair
Padat
Gel
Mentega, agar-agar
Padat
Gas
Aerosol padat
Debu, gas knalpot, asap
Padat
Cair
Sol
Cat, tinta
Padat
Padat
Sol Padat
Tanah, kaca, lumpur
B. Sifat Koloid
a. Efek Tyndall
Efek Tyndall adalah penghamburan cahaya oleh larutan koloid, peristiwa di mana jalannya sinar dalam koloid dapat terlihat karena partikel koloid dapat menghamburkan sinar ke segala jurusan.
Contoh: sinar matahari yang dihamburkan partikel koloid di angkasa, hingga langit berwarna biru pada siang hari dan jingga pada sore hari ; debu dalam ruangan akan terlihat jika ada sinar masuk melalui celah.
b. Gerak Brown
Gerak Brown adalah gerak partikel koloid dalam medium pendispersi secara terus menerus, karena adanya tumbukan antara partikel zat terdispersi dan zat pendispersi. Karena gerak aktif yang terus menerus ini, partikel koloid tidak memisah jika didiamkan.
c. Adsorbsi Koloid
Adsorbsi Koloid adalah penyerapan zat atau ion pada permukaan koloid. Sifat adsorbsi digunakan dalam proses:
1. Pemutihan gula tebu.
2. Norit.
3. Penjernihan air.
Contoh: koloid antara obat diare dan cairan dalam usus yang akan menyerap kuman penyebab diare.
Koloid Fe(OH)3 akan mengadsorbsi ion H+ sehingga menjadi bermuatan +. Adanya muatan senama maka koloid Fe(OH), akan tolak-menolak sesamanya sehingga partikel-partikel koloid tidak akan saling menggerombol.
Koloid As2S3 akan mengadsorbsi ion OH- dalam larutan sehingga akan bermuatan - dan tolak-menolak dengan sesamanya, maka koloid As2S3 tidak akan menggerombol.
d. Muatan Koloid dan Elektroforesis
Muatan Koloid ditentukan oleh muatan ion yang terserap permukaan koloid. Elektroforesis adalah gerakan partikel koloid karena pengaruh medan listrik.
Karena partikel koloid mempunyai muatan maka dapat bergerak dalam medan listrik. Jika ke dalam koloid dimasukkan arus searah melalui elektroda, maka koloid bermuatan positif akan bergerak menuju elektroda negatif dan sesampai di elektroda negatif akan terjadi penetralan muatan dan koloid akan menggumpal (koagulasi).
Contoh: cerobong pabrik yang dipasangi lempeng logam yang bermuatan listrik dengan tujuan untuk menggumpalkan debunya.
e. Koagulasi Koloid
Koagulasi koloid adalah penggumpalan koloid karena elektrolit yang muatannya berlawanan.
Contoh: kotoran pada air yang digumpalkan oleh tawas sehingga air menjadi jernih.
Faktor-faktor yang menyebabkan koagulasi:
·                                                   § Perubahan suhu.
·                                                   § Pengadukan.
·                                                   § Penambahan ion dengan muatan besar (contoh: tawas).
·                                                   § Pencampuran koloid positif dan koloid negatif.
·                     Koloid akan mengalami koagulasi dengan cara:
·                     1. Mekanik
·         Cara mekanik dilakukan dengan pemanasan, pendinginan atau pengadukan cepat.
·                     2. Kimia
·                     Dengan penambahan elektrolit (asam, basa, atau garam).
·                     Contoh: susu + sirup masam —> menggumpal
·                     lumpur + tawas —> menggumpal
·         Dengan mencampurkan 2 macam koloid dengan muatan yang berlawanan.
·         Contoh: Fe(OH)3 yang bermuatan positif akan menggumpal jika dicampur As2S3 yang bermuatan negatif.
f. Koloid Liofil dan Koloid Liofob
- Koloid Liofil
Koloid Liofil adalah koloid yang mengadsorbsi cairan, sehingga terbentuk selubung di sekeliling koloid.
Contoh: agar-agar.
- Koloid Liofob
Koloid Liofob adalah kolid yang tidak mengadsorbsi cairan. Agar muatan koloid stabil, cairan pendispersi harus bebas dari elektrolit dengan cara dialisis, yakni pemurnian medium pendispersi dari elektrolit.
g. Emulasi
Emulasi adalah kolid cairan dalam medium cair. Agar larutan kolid stabil, ke dalam koloid biasanya ditambahkan emulsifier, yaitu zat penyetabil agar koloid stabil.
Contoh: susu merupakan emulsi lemak di dalam air dengan kasein sebagai emulsifier.
h. Kestabilan Koloid
a. Banyak koloid yang harus dipertahankan dalam bentuk koloid untuk penggunaannya.
Contoh: es krim, tinta, cat.
Untuk itu digunakan koloid lain yang dapat membentuk lapisan di sekeliling koloid tersebut. Koloid lain ini disebut koloid pelindung.
Contoh: gelatin pada sol Fe(OH)3.
b. Untuk koloid yang berupa emulsi dapat digunakan emulgator yaitu zat yang dapat tertarik pada kedua cairan yang membentuk emulsi
Contoh: sabun deterjen sebagai emulgator dari emulsi minyak dan air.
i. Pemurnian Koloid
Untuk memurnikan koloid yaitu menghilangkan ion-ion yang mengganggu kestabilan koloid, dapat dilakukan cara dialisis. Koloid yang akan dimurnikan dimasukkan ke kantong yang terbuat dari selaput semipermeabel yaitu selaput yang hanya dapat dilewati partikel ion saja dan tidak dapat dilewati molekul koloid.
Contoh: kertas perkamen, selopan atau kolodion.
Kantong koloid dimasukkan ke dalam bejana yang berisi air mengalir, maka ion-ion dalam koloid akan keluar dari kantong dan keluar dari bejana dan koloid tertinggal dalam kantong. Proses dialisis akan di percepat jika di dalam bejana diberikan arus listrik yang disebut elektro dialisis.
Proses pemisahan kotoran hasil metabolisme dari darah oleh ginjal termasuk proses dialisis. Maka apabila seseorang menderita gagal ginjal, orang tersebut harus menjalani “cuci darah” dengan mesin dialisator di rumah sakit. Koloid juga dapat dimurnikan dengan penyaring ultra.
C. Pembuatan Sistem Koloid
  1. Cara Kondensasi
Pembuatan sistem koloid dengan cara kondensasi dilakukan dengan cara penggumpalan partikel yang sangat kecil. Penggumpalan partikel ini dapat dilakukan dengan cara sebagai berikut:
1. Reaksi Pengendapan
Pembuatan sistem koloid dengan cara ini dilakukan dengan mencampurkan larutan elektrolit sehingga menghasilkan endapan.
Contoh: AgNO3 + NaCl —> AgCl(s) + NaNO3
2. Reaksi Hidrolisis
Reaksi hidrolisis adalah reaksi suatu zat dengan air. Sistem koloid dapat dibuat dengan mereaksikan suatu zat dengan air.
Contoh: AlCl3 +H2O —> Al(OH)3(s) + HCl
3. Reaksi Redoks
Pembuatan koloid dapat terbentuk dari hasil reaksi redoks.
Contoh: pada larutan emas
Reaksi: AuCl3 + HCOH —> Au + HCl + HCOOH
Emas formaldehid
4. Reaksi Pergeseran
Contoh: pembuatan sol As2S3 dengan cara mengalirkan gas H2S ke dalam laruatn H3AsO3 encer pada suhu tertentu.
Reaksi: 2 H3AsO3 + 3 H2S —> 6 H2O + As2S3
5. Reaksi Pergantian Pelarut
Contoh: pembuatan gel kalsium asetat dengan cara menambahkan alkohol 96% ke dalam larutan kalsium asetat jenuh.
2.Cara Dispersi
Pembuatan sistem koloid dengan cara dispersi dilakukan dengan memperkecil partikel suspensi yang terlalu besar menjadi partikel koloid, pemecahan partikel-partikel kasar menjadi koloid.
1. Cara Mekanik
Ukuran partikel suspensi diperkecil dengan cara penggilingan zat padat, dengan menghaluskan butiran besar kemudian diaduk dalam medium pendispersi.
Contoh: Gumpalan tawas digiling, dicampurkan ke dalam air akan membentuk koloid dengan kotoran air.
Membuat tinta dengan menghaluskan karbon pada penggiling koloid kemudian didispersikan dalam air.
Membuat sol belerang dengan menghaluskan belerang bersama gula (1:1) pada penggiling koloid, kemudian dilarutkan dalam air, gula akan larut dan belerang menjadi sol.
2. Cara Peptisasi
Pembuatan koloid dengan cara peptisasi adalah pembuatan koloid dengan menambahkan ion sejenis, sehingga partikel endapan akan dipecah.
Contoh: sol Fe(OH)3 dengan menambahkan FeCl3.
sol NiS dengan menambahkan H2S.
karet dipeptisasi oleh bensin.
agar-agar dipeptisasi oleh air.
endapan Al(OH)3 dipeptisasi oleh AlCl3.
3. Cara Busur Bredia/Bredig
Pembuatan koloid dengan cara busur Bredia/Bredig dilakukan dengan mencelupkan 2 kawat logam (elektroda) yang dialiri listrik ke dalam air, sehingga kawat logam akan membentuk partikel koloid berupa debu di dalam air.
4. Cara Ultrasonik
yaitu penghancuran butiran besar dengan ultrasonik (frekuensi > 20.000 Hz)
Campuran heterogen.
Campuran homogen disebut larutan, contoh: larutan gula dalam air. Campuran heterogen dapat dibedakan menjadi 2 macam, yaitu: Sistem koloid termasuk dalam bentuk campuran. Campuran terbagi menjadi 2, yaitu:
1. Suspensi, contoh: pasir dalam air.
2. Koloid, contoh: susu dengan air.
D. Komponen Penyusun Koloid
1. Fase kontinyu : medium pendispersi jumlahnya lebih banyak.
2. Fase diskontinyu : medium terdispersi jumlahnya labih banyak.
E. Bentuk Partikel Koloid
1. Bulatan : misalnya virus, silika.
2. Batang : misalnya virus.
3. Piringan : misalnya globulin dalam darah.
4. Serat : misalnya selulosa.
F. Penggunaan Sistem Koloid
1. Obat-obatan : salep, krim, minyak ikan.
2. Makanan : es krim, jelly dan agar-agar.
3. Kosmetik : hair cream, skin spray, body lotion.
4. Industri : tinta, cat.
G.Beberapa Macam Koloid
1. Aerosol
adalah sistem koloid di mana partikel padat atau cair terdispersi dalam gas.
Contoh: aerosol padat: debu, asap.
aerosol cair: kabut, awan.
Bahan pendingin dan pendorong yang sering digunakan adalah Kloro Fluoro Karbon (CFC).
2. Emulsi
adalah sistem koloid di mana zat terdispersi dan pendispersi adalah zat cair yang tidak dapat bercampur. Misalnya: Emulsi minyak dalam air: santan, susu, lateks, minyak ikan. Emulsi air dalam minyak: mentega, minyak rambut, minyak bumi.
Untuk membentuk emulsi digunakan zat pengemulsi atau emulgator yaitu zat yang dapat tertarik oleh kedua zat cair tersebut.
Contoh: sabun untuk mengemulsikan minyak dan air.
kasein sebagai emulgator pada susu.
3. Sol
adalah suatu sistem koloid di mana partikel padat terdispersi dalam zat cair.
No.
Hidrofob
Hidrofil
a.
Tidak menarik molekul air tetapi mengadsorbsi ion
Menarik molekul air hingga menyelubungi partikel terdispersi
b.
Tidak reversible, apabila mengalami koagulasi sukar menjadi sol lagi
Reversibel, bila mengalami koagulasi akan dapat membentuk sol lagi jika ditambah lagi medium pendispersinya
c.
Biasanya terdiri atas zat anorganik
Biasanya terdiri atas zat organik
d.
Kekentalannya rendah
Kekentalannya tinggi
e.
Gerak Brown terlihat jelas
Gerak Brown tidak jelas
f.
Mudah dikoagulasikan oleh elektrolit
Sukar dikoagulasikan oleh elektrolit
g.
Umumnya dibuat dengan cara kondensasi
Umumnya dibuat dengan cara dispersi
h.
Efek Tyndall jelas
Efek Tyndall kurang jelas
i.
Contoh: sol logam, sol belerang, sol Fe(OH)3, sol As2S3, sol sulfida
Contoh: sol kanji, sol protein, sol sabun, sol gelatin
4. Gel/Jel
adalah koloid liofil setengah kaku.
Contoh: agar-agar, lem kanji, selai, jelly untuk menata rambut.
5. Buih
adalah sistem koloid dari gas yang terdispersi dalam zat cair.
Contoh: sabun, detergen, protein.
Zat-zat yang dapat memecah/mencegah buih yaitu eter, isoamil alkohol.
H.SABUN/DETERGEN
adalah zat yang molekulnya terdiri atas hidrofob dan sekaligus gugus hidrofil.
I. PENJERNIHAN AIR SUNGAI
1. Air sungai mengandung lumpur ditambah tawas ® air jernih.
2. Air jernih ditambah kaporit ® air jernih bebas kuman.
3. Air jernih bebas kuman disaring ® air bersih.


Pemisahan Koloid

Ditulis oleh Ratna dkk pada 19-04-2009

Elektroforesis

Telah disinggung pada pembahasan sebelumnya, elektroforesis merupakan peristiwa pergerakan partikel koloid yang bermuatan ke salah satu elektroda dalam suatu sistem sejenis elektrolisis.
Elektroforesis dapat digunakan untuk mendeteksi muatan suatu sistem koloid. Jika koloid bergerak menuju elektroda positif maka koloid yang dianalisa mempunyai muatan negatif. Begitu juga sebaliknya, jika koloid bergerak menuju elektroda negatif maka koloid yang dianalisa mempunyai muatan positif. Salah satu proses yang menggunakan sistem elektroforesis adalah proses membersihkan asap dalam suatu industri dengan menggunakan alat Cottrell. Penggunaan elektroforesis tidak hanya sebatas itu, melainkan meluas untuk memisahkan partikel yang termasuk dalam ukuran koloid, antara lain pemisahan protein yang mempunyai muatan yang berbeda. Contoh percobaan elektroforesis sederhana untuk menentukan jenis muatan dari koloid X diperlihatkan pada Gambar 6.10.

Dialisis

Dialisis merupakan proses pemurnian suatu sistem koloid dari partikel-partikel bermuatan yang menempel pada permukaan Pada proses digunakan selaput Semipermeabel. Proses pemisahan ini didasarkan pada perbedaan laju transport partikel. Prinsip dialisis digunakan dalam alat cuci darah bagi penderita gagal ginjal, di mana fungsi ginjal digantikan oleh dialisator.

Penyaringan Ultra

Penyaringan ultra digunakan untuk memisahkan koloid melewati membran. Proses pemisahan ini didasarkan pada perbedaan tekanan osmosis.
rangkaian
Rangkaian untuk elektrolisis
Prinsip dialisis
Prinsip dialisis

Pengelompokan Koloid

Ditulis oleh Ratna dkk pada 19-04-2009
Berdasarkan pada fase terdispersi dan medium pendisfersinya, sistem koloid dapat digolongkan sebagaimana seperti dalam berikut.
Tabel Jenis-jenis koloid
Tabel Jenis-jenis koloid

Macam-macam Koloid

  • Aerosol : suatu sistem koloid, jika partikel padat atau cair terdispersi dalam gas. Contoh : debu, kabut, dan awan.
  • Sol : suatu sistem koloid, jika partikel padat terdispersi dalam zat cair.
  • Emulsi : suatu sistem koloid, jika partikel cair terdispersi dalam zat cair.
  • Emulgator : zat yang dapat menstabilkan emulsi dan (Sabun adalah emulgator campuran air dan minyak dan Kasein adalah emulgator lemak dalam air?.
  • Gel : koloid liofil yang setengah kaku.
  • Gel terjadi jika medium pendispersi di absorbs oleh partikel koloid sehingga terjadi koloid yang agak padat. Larutan sabun dalam air yang pekat dan panas dapat berupa cairan tapi jika dingin membentuk gel yang relatif kaku. Jika dipanaskan akan mencair lagi.


Sistem Koloid

Ghild
A. Komponen dan Pengelompokan Sistem Koloid
1. Sistem Koloid
Ada kehidupan sehari-hari ini, sering kita temui beberapa produk yang merupakan campuran dari beberapa zat, tetapi zat tersebut dapat bercampur secara merata/ homogen. Misalnya saja saat ibu membuatkan susu untuk adik, serbuk/ tepung susu bercampur secara merata dengan air panas. Produk-produk seperti itu adalah sistem koloid.
Koloid adalah suatu campuran zat heterogen (dua fase) antara dua zat atau lebih di mana partikel-partikel zat yang berukuran koloid (fase terdispersi/yang dipecah) tersebar secara merata di dalam zat lain (medium pendispersi/ pemecah). Ukuran partikel koloid berkisar antara 1-100 nm. Ukuran yang dimaksud dapat berupa diameter, panjang, lebar, maupun tebal dari suatu partikel. Contoh lain dari sistem koloid adalah adalah tinta, yang terdiri dari serbuk-serbuk warna (padat) dengan cairan (air). Selain tinta, masih terdapat banyak sistem koloid yang lain, seperti mayones, hairspray, jelly, dll.
Keadaan koloid atau sistem koloid atau suspensi koloid atau larutan koloid atau suatu koloid adalah suatu campuran berfasa dua yaitu fasa terdispersi dan fasa pendispersi dengan ukuran partikel terdispersi berkisar antara 10-7 sampai dengan 10-4 cm. Besaran partikel yang terdispersi, tidak menjelaskan keadaan partikel tersebut. Partikel dapat terdiri atas atom, molekul kecil atau molekul yang sangat besar. Koloid emas terdiri atas partikel-partikel dengan bebagai ukuran, yang masing-masing mengandung jutaan atom emas atau lebih. Koloid belerang terdiri atas partikel-partikel yang mengandung sekitar seribu molekul S8. Suatu contoh molekul yang sangat besar (disebut juga molekul makro) ialah haemoglobin. Berat molekul dari molekul ini 66800 s.m.a dan mempunyai diameter sekitar 6 x 10-7.
Perbedaan Larutan, Koloid, dan Suspensi
No.
Larutan
Koloid
Suspensi
1.
1 fase
2 fase
2 fase
2.
Jernih
Keruh
Keruh
3.
diameter partikel:
<> 
diameter partikel:
1 nm <>
diameter partikel:
> 100 nm
4.
tidak dapat disaring
tidak dapat disaring dengan penyring biasa
dapat disaring
5.
homogen
antara homogen dengan heterogen
heterogen
6.
tidak memisah jika didiamkan
tidak memisah jika didiamkan
memisah jika didiamkan
2. Jenis-Jenis Koloid
Koloid memiliki bentuk bermacam-macam, tergantung dari fasa zat pendispersi dan zat terdispersinya. Beberapa jenis koloid:
  • Aerosol yang memiliki zat pendispersi berupa gas. Aerosol yang memiliki zat terdispersi cair disebut aerosol cair (contoh: kabut) sedangkan yang memiliki zat terdispersi padat disebut aerosol padat (contoh: asap).
  • Sol
  • Emulsi
  • Buih
  • Gel
Ü Sol (fase terdispersi padat)
a. Sol padat adalah sol dalam medium pendispersi padat
Contoh: paduan logam, gelas warna, intan hitam
b. Sol cair adalah sol dalam medium pendispersi cair
Contoh: cat, tinta, tepung dalam air, tanah liat
c. Sol gas adalah sol dalam medium pendispersi gas
Contoh: debu di udara, asap pembakaran

Ü Emulsi (fase terdispersi cair)
a. Emulsi padat adalah emulsi dalam medium pendispersi padat
Contoh: Jelly, keju, mentega, nasi
b. Emulsi cair adalah emulsi dalam medium pendispersi cair
Contoh: susu, mayones, krim tangan
c. Emulsi gas adalah emulsi dalam medium pendispersi gas
Contoh: hairspray dan obat nyamuk

Ü BUIH (fase terdispersi gas)
a. Buih padat adalah buih dalam medium pendispersi padat
Contoh: Batu apung, marshmallow, karet busa, Styrofoam
b. Buih cair adalah buih dalam medium pendispersi cair
Contoh: putih telur yang dikocok, busa sabun
- Untuk pengelompokan buih, jika fase terdispersi dan medium pendispersi

sama- sama berupa gas, campurannya tergolong larutan
B. Sifat-Sifat Koloid
  • Efek Tyndall
Efek Tyndall ialah gejala penghamburan berkas sinar (cahaya) oleh partikel-partikel koloid. Hal ini disebabkan karena ukuran molekul koloid yang cukup besar. Efek tyndall ini ditemukan oleh John Tyndall (1820-1893), seorang ahli fisika Inggris. Oleh karena itu sifat itu disebut efek tyndall.
Efek tyndall adalah efek yang terjadi jika suatu larutan terkena sinar. Pada saat larutan sejati (gambar kiri) disinari dengan cahaya, maka larutan tersebut tidak akan menghamburkan cahaya, sedangkan pada sistem koloid (gambar kanan), cahaya akan dihamburkan. hal itu terjadi karena partikel-partikel koloid mempunyai partikel-partikel yang relatif besar untuk dapat menghamburkan sinar tersebut. Sebaliknya, pada larutan sejati, partikel-partikelnya relatif kecil sehingga hamburan yang terjadi hanya sedikit dan sangat sulit diamati.
  • Gerak Brown
Gerak Brown ialah gerakan partikel-partikel koloid yang senantiasa bergerak lurus tapi tidak menentu (gerak acak/tidak beraturan). Jika kita amati koloid dibawah mikroskop ultra, maka kita akan melihat bahwa partikel-partikel tersebut akan bergerak membentuk zigzag. Pergerakan zigzag ini dinamakan gerak Brown. Partikel-partikel suatu zat senantiasa bergerak. Gerakan tersebut dapat bersifat acak seperti pada zat cair dan gas, atau hanya bervibrasi di tempat seperti pada zat padat. Untuk koloid dengan medium pendispersi zat cair atau gas, pergerakan partikel-partikel akan menghasilkan tumbukan dengan partikel-partikel koloid itu sendiri. Tumbukan tersebut berlangsung dari segala arah. Oleh karena ukuran partikel cukup kecil, maka tumbukan yang terjadi cenderung tidak seimbang. Sehingga terdapat suatu resultan tumbukan yang menyebabkan perubahan arah gerak partikel sehingga terjadi gerak zigzag atau gerak Brown.
Semakin kecil ukuran partikel koloid, semakin cepat gerak Brown terjadi. Demikian pula, semakin besar ukuran partikel koloid, semakin lambat gerak Brown yang terjadi. Hal ini menjelaskan mengapa gerak Brown sulit diamati dalam larutan dan tidak ditemukan dalam zat padat (suspensi). Gerak Brown juga dipengaruhi oleh suhu. Semakin tinggi suhu system koloid, maka semakin besar energi kinetic yang dimiliki partikel-partikel medium pendispersinya. Akibatnya, gerak Brown dari partikel-partikel fase terdispersinya semakin cepat. Demikian pula sebaliknya, semakin rendah suhu system koloid, maka gerak Brown semakin lambat.
  • Absorpsi
Absorpsi ialah peristiwa penyerapan partikel atau ion atau senyawa lain pada permukaan partikel koloid yang disebabkan oleh luasnya permukaan partikel. (Catatan : Absorpsi harus dibedakan dengan absorpsi yang artinya penyerapan yang terjadi di dalam suatu partikel). Contoh : (i) Koloid Fe(OH)3 bermuatan positif karena permukaannya menyerap ion H+. (ii) Koloid As2S3 bermuatan negatif karena permukaannya menyerap ion S2.
  • Muatan koloid
Dikenal dua macam koloid, yaitu koloid bermuatan positif dan koloid bermuatan negatif.
  • Koagulasi koloid
Koagulasi adalah penggumpalan partikel koloid dan membentuk endapan. Dengan terjadinya koagulasi, berarti zat terdispersi tidak lagi membentuk koloid. Koagulasi dapat terjadi secara fisik seperti pemanasan, pendinginan dan pengadukan atau secara kimia seperti penambahan elektrolit, pencampuran koloid yang berbeda muatan.
  • Koloid pelindung
Koloid pelindung ialah koloid yang mempunyai sifat dapat melindungi koloid lain dari proses koagulasi.
  • Dialisis
Dialisis ialah pemisahan koloid dari ion-ion pengganggu dengan cara ini disebut proses dialisis.
  • Elektroforesis
Elektroferesis ialah peristiwa pemisahan partikel koloid yang bermuatan dengan menggunakan arus listrik.
C. Pembuatan Sistem Koloid
1. Cara Kondensasi
Cara kondensasi adalah cara pembuatan koloid dari partikel kecil ( larutan ) menjadi partikel koloid. Cara kondensasi ini merupakan cara kimia, yaitu melalui reaksi erdoks, reaksi hidrolisis, dekomposisi rangkap, dan pergantian pelarut.
2. Cara Dispersi
Cara Dispersi adalah pembuatan partikel koloid dari partikel kasar ( suspensi ) menjadi partikel koloid. Cara Dispersi ini di antaranya cara mekanik, peptisasi, busur bredig, dan ultrasonik.
  1. Cara Mekanik
Cara ini adalah dengan penggerusan atau penggilingan untuk zat padat, serta dengan pengadukan atau pengocokan untuk zat cair. Setelah diperoleh partikel yang kehalusannya sesuai koloid, lalu didispersikan ke dalam medium (pendispersinya). Contoh: pembuatan sol belerang.
  1. Cara Peptisasi
Cara ini adalah menggunakan zat kimia untuk memecah partikel besar menjadi partikel koloid. Partikel kasar dipecah-pecah menjadi partikel koloid dengan penambahan suatu zat elektrolit.
Contoh:
1) Pencernaan makanan dengan enzim
2) Pembuatan sol belerang dari endapan nikel sulfide (NiS)dengan mengalirkan gas H2S
  1. Cara Busur Bredig
Cara busur bredig ialah pemecahan zat padatan logam menjadi partikel koloid dengan menggunakan arus listrik tegangan tinggi. Cara ini adalah dengan membuat logam yang hendak dibuat solnya menjadi dua kawat yang berfungsi sebagai elektrode yang dicelupkan ke dalam air, kemudian diberi loncatan listrik di antara kedua ujung kawat. Logam sebagian akan luntur (mendebu) ke dalam air sehingga terbentuk sol logam.
  1. Cara Ultrasonik
Cara ini hampir sama dengan cara busur bredig, yaitu sama-sama untuk pembuatan sol logam. Kalau busur bredig menggunakan arus listrik tegangan tinggi. Maka cara ultrasonik menggunakan energi bunyi dengan frekuensi sangat tinggi, yaitu di atas 20.000 Hz
D. Kegunaan Koloid
Sistem koloid banyak digunakan pada kehidupan sehari-hari, terutama dalam kehidupan sehari-hari. Hal ini disebabkan sifat karakteristik koloid yang penting, yaitu dapat digunakan untuk mencampur zat-zat yang tidak dapat saling melarutkan secara homogen dan bersifat stabil untuk produksi dalam skala besar.
Berikut ini adalah tabel aplikasi koloid:
Jenis industri
Contoh aplikasi
Industri makanan
Keju, mentega, susu, saus salad
Industri kosmetika dan perawatan tubuh
Krim, pasta gigi, sabun
Industri cat
Cat
Industri kebutuhan rumah tangga
Sabun, deterjen
Industri pertanian
Peptisida dan insektisida
Industri farmasi
Minyak ikan, pensilin untuk suntikan
Berikut ini adalah penjelasan mengenai aplikasi koloid:
1. Pemutihan Gula
Gula tebu yang masih berwarna dapat diputihkan. Dengan melarutkan gula ke dalam air, kemudian larutan dialirkan melalui sistem koloid tanah diatomae atau karbon. Partikel koloid akan mengadsorpsi zat warna tersebut. Partikel-partikel koloid tersebut mengadsorpsi zat warna dari gula tebu sehingga gula dapat berwarna putih.
2. Penggumpalan Darah
Darah mengandung sejumlah koloid protein yang bermuatan negatif. Jika terjadi luka, maka luka tersebut dapat diobati dengan pensil stiptik atau tawas yang mengandung ion-ion Al3+ dan Fe3+. Ion-ion tersebut membantu agar partikel koloid di protein bersifat netral sehingga proses penggumpalan darah dapat lebih mudah dilakukan.
3. Penjernihan Air
Air keran (PDAM) yang ada saat ini mengandung partikel-partikel koloid tanah liat,lumpur, dan berbagai partikel lainnya yang bermuatan negatif. Oleh karena itu, untuk menjadikannya layak untuk diminum, harus dilakukan beberapa langkah agar partikel koloid tersebut dapat dipisahkan. Hal itu dilakukan dengan cara menambahkan tawas (Al2SO4)3.Ion Al3+ yang terdapat pada tawas tersebut akan terhidroslisis membentuk partikel koloid Al(OH)3 yang bermuatan positif melalui reaksi:
Al3+ + 3H2O à Al(OH)3 + 3H+
Setelah itu, Al(OH)3 menghilangkan muatan-muatan negatif dari partikel koloid tanah liat/lumpur dan terjadi koagulasi pada lumpur. Lumpur tersebut kemudian mengendap bersama tawas yang juga mengendap karena pengaruh gravitasi.
E. KESIMPULAN
  1. Partikel koloid dapat menghamburkan cahaya sehingga berkas cahaya yang melalui sistem koloid. Dapat diamati dari samping sifat partikel koloid ini disebut efek Tyndall.
  2. Jika diamati dengan mikroskop ultra ternyata partikel koloid senantiasa bergerak dengan gerak patah-patah yang disebut gerak Brown. Gerak Brown terjadi karena tumbukan tak simetris antara molekul medium dengan partikel koloid.
  3. Koloid dapat mengadsorpsi ion atau zat lainpada permukaannya, dan oleh karena luas permukaannya yang relatif besar, maka koloid mempunyai daya adsorpsi yang besar.
  4. Adsorpsi ion-ion oleh partikel koloid membuat partikel koloid menjadi bermuatan listrik. Muatan koloid menyebabkan gaya tolak-menolak di antara partikel koloid, sehingga menjadi stabil (tidak mengalami sedimentasi).
  5. Muatan partikel koloid dapat ditunjukkan dengan elektroforesis, yaitu pergerakan partikel koloid dalam medan listrik.
  6. Penggumpalan partikel koloid disebut koagulasi. Koagulasi dapat terjadi karena berbagai hal, misalnya pada penambahan elektrolit. Penambahan elekrolit akan menetralkan muatan koloid, sehingga faktor yang menstabilkannya hilang.
  7. Campuran koloid dapat dipisahkan dari ion-ion atau partikel terlarut lainnya melalui dialisis.
  8. Koloid yang medium dispersinya berupa cairan dibedakan atas koloid liofil dan koloid liofob. Koloid liofil mempunyai interaksi yang kuat dengan mediumnya; sebaliknya, pada koloid liofob interaksinya tersebut tidak ada atau sangat lemah.
  9. Banyak sekali produk industri dalam bentuk koloid, terutama karena dengan bentuk koloid, maka zat-zat yang tidak saling melarutkan dapat disajikan homogen secara makroskopis.
  10. Pengolahan air bersih memanfaatkan sifat koloid, yaitu adsorpsi dan koagulasi. Pada pengolahan air bersih digunakan tawas (alumunium sulfat), kaporit (klorin) dan kapur.
  11. Koloid dapat dibuat dengan cara dispersi atau kondensasi. Pada cara dispersi, bahan kasar dihaluskan kemudian didispersikan ke dalam medium dispersinya. Pada cara kondensasi, koloid dibuat dari larutan di mana atom atau molekul mengalami agregasi (pengelompokan), sehingga menjadi partikel koloid.
  12. Sabun dan detergen bekerja sebagai bahan aktif permukaan yang fungsinya mengelmusikan lemak ke dalam air.
  13. Asbut adalah suatu bentuk pencemaran yang merupakan sistem koloid.


Tidak ada komentar:

Posting Komentar